❤ Hydrogen spectrum is emission line spectrum "explain- (5 marks)
Answers
Answer:
When an electric current is passed through a glass tube that contains hydrogen gas at low pressure the tube gives off blue light. When this light is passed through a prism (as shown in the figure below), four narrow bands of bright light are observed against a black background.
These narrow bands have the characteristic wavelengths and colors shown in the table below.
Wavelength Color
656.2 red
486.1 blue-green
434.0 blue-violet
410.1 violet
Four more series of lines were discovered in the emission spectrum of hydrogen by searching the infrared spectrum at longer wave-lengths and the ultraviolet spectrum at shorter wavelengths. Each of these lines fits the same general equation, where n1 and n2 are integers and RH is 1.09678 x 10-2 nm-1.
Explanation of the Emission Spectrum
Max Planck presented a theoretical explanation of the spectrum of radiation emitted by an object that glows when heated. He argued that the walls of a glowing solid could be imagined to contain a series of resonators that oscillated at different frequencies. These resonators gain energy in the form of heat from the walls of the object and lose energy in the form of electromagnetic radiation. The energy of these resonators at any moment is proportional to the frequency with which they oscillate.
To fit the observed spectrum, Planck had to assume that the energy of these oscillators could take on only a limited number of values. In other words, the spectrum of energies for these oscillators was no longer continuous. Because the number of values of the energy of these oscillators is limited, they are theoretically "countable." The energy of the oscillators in this system is therefore said to be quantized. Planck introduced the notion of quantization to explain how light was emitted.
Albert Einstein extended Planck's work to the light that had been emitted. At a time when everyone agreed that light was a wave (and therefore continuous), Einstein suggested that it behaved as if it was a stream of small bundles, or packets, of energy. In other words, light was also quantized. Einstein's model was based on two assumptions. First, he assumed that light was composed of photons, which are small, discrete bundles of energy. Second, he assumed that the energy of a photon is proportional to its frequency.
E = hv
In this equation, h is a constant known as Planck's constant, which is equal to 6.626 x 10-34 J-s.
Example: Let's calculate the energy of a single photon of red light with a wavelength of 700.0 nm and the energy of a mole of these photons.
Red light with a wavelength of 700.0 nm has a frequency of 4.283 x 1014 s-1. Substituting this frequency into the Planck-Einstein equation gives the following result.
A single photon of red light carries an insignificant amount of energy. But a mole of these photons carries about 171,000 joules of energy, or 171 kJ/mol.
Absorption of a mole of photons of red light would therefore provide enough energy to raise the temperature of a liter of water by more than 40oC.
The fact that hydrogen atoms emit or absorb radiation at a limited number of frequencies implies that these atoms can only absorb radiation with certain energies. This suggests that there are only a limited number of energy levels within the hydrogen atom. These energy levels are countable. The energy levels of the hydrogen atom are quantized.