Math, asked by sauravsharma5171, 9 months ago

i-1
5 Convert the complex number
in the polar form
70
TC
tisin​

Answers

Answered by Anonymous
34

\Large{\underline{\sf{\purple{To\:Convert}}}} \\

  • Convert -1+i into polar form .

\Large{\underline{\sf{\purple{Solution}}}} \\

Let z = -1 + i . Now we have to find out the value of r .

\sf{\implies r = | z | } \\

 \sf{ \implies \:  |z|  =  \sqrt{( {Im(z))}^{2}  + ( {Re(z)}^{2} } } \\

\sf{ \implies \:  |z|  =  \sqrt{({ 1)}^{2}  + ( {-1})^{2} } } \\

  • {\underline{\underline{\sf{ \implies \:  |z|  =  \sqrt{2}}}}} \\

Let \alpha \\ be the acuteangle given by

 \sf{ \implies \tan( \alpha )  =  | \frac{Im(z)}{Re(z)} | } \\

\sf{ \implies \tan( \alpha )  =  | \frac{1}{-1} | } \\

\sf{ \implies \tan( \alpha )  =  1 } \\

\sf{ \implies  \alpha   =   \frac{\pi}{4}  } \\

The poetry poetry presenting Z lies in the second quadrant . So , the the argument \theta \\ of z is given by

 \sf{ \implies \:  \theta \:  = \pi -  \alpha } \\

\sf{ \implies \:  \theta \:  = \pi -  \frac{\pi}{4} } \\

  • {\underline{\underline{\sf{ \implies \:  \theta \:  =   \frac{3 \pi}{4} }}}} \\

Hence , thepolar form of Z = -1+i is

 \sf{ \implies \:z = r( \cos( \theta)  + i \sin( \theta) ) }\\

{\underline{\underline{\sf{\purple{\implies \:z = \sqrt{2} ( \cos( \frac{3 \pi}{4})  + i \sin( \frac{3 \pi}{4}) )}}}}} \\

Similar questions