Math, asked by akhilbirua17, 16 hours ago

i={ 1 /( e^x + e-^x dx
integer​

Answers

Answered by SugarCrash
1

\sf\large\red{\underline{\underline{Appropriate\; Question}}}:

  • \bf\displaystyle\int\dfrac{1}{e^x + e^{-x}}dx

\sf\large\red{\underline{\underline{Solution}}}:

= \displaystyle\int\dfrac{1}{e^x+e^{-x}} dx

= \displaystyle\int\dfrac{1}{e^x + \frac{1}{e^x}} dx  

 \boxed{\red\bigstar e^{-x} = \dfrac{1}{e^x}}

=\displaystyle\int\dfrac{1}{\dfrac{(e^x)^2+1}{e^x}} dx

=\displaystyle\int\dfrac{1}{\dfrac{e^{2x}+1}{e^x}}dx

= \displaystyle\int\dfrac{e^x}{e^{2x}+1}dx

Now put e^{2x} = t

differentiating both sides w.r.t x,

2e^{2x}\;dx = dt

e^{2x}\;dx = \dfrac{dt}{2}

so,

= \displaystyle\int\dfrac{dt}{t^2+1}

We know that, \red\bigstar\displaystyle\int\dfrac{1}{x^2+1} dx = \tan^{-1}\frac{x}{a}+ c

= \sf\tan^{-1}\frac{t}{1} + c

Putting t = e^2x

= \displaystyle\tan^{-1} e^{2x} + c

Similar questions