Math, asked by ajish5010, 7 months ago

I^104+i^109+i^114+i^119=0​

Answers

Answered by Anonymous
47

Answer:

To Find :

Prove that I^104+i^109+i^114+i^119=0

Solution:

LHS :

 \sf \:  {i}^{104}  \\  \\  \tt \: we \: know \: that \:  \\  \\

  \sf \: {i}^{4}  = 1 \\  \\ therefore

 \sf \:  {i}^{104}  = 1

 \sf \:  {i}^{109}  =  {i}^{108 + 1}

 \tt \: we \: know \: that

 \sf \:  {i}^{108 }  = 1 \:  \: and \:  {i}^{1}  = 1

therefore

 \sf \:  {i}^{109}  = i

 \:  \sf \:  {i}^{114}  =  {i}^{112 + 2}

 \tt \: we \: know \:  \: that \:

 \sf \:  {i}^{112}  = 1 \:  \: and \:  \:  {i}^{2}  =  - 1

therefore

 \sf \:  {i}^{114}  =  - 1

 \sf \:  {i}^{119}  =  {i}^{116 + 3}

 \tt \: we \: know \: that

 \sf \:  {i}^{116}  = 1 \:  \: and \:  \:  {i}^{3}  =  - 1

therefore

 \sf \:  {i}^{119}  =  - i

 \sf \longrightarrow \:  {i}^{114}  +  {i}^{109}  +  {i}^{114}  +  {i}^{119}

 \sf \longrightarrow \: (1) + (i) + ( - 1) +  ( - i)

 \sf \longrightarrow \: 1 - 1 + i - i

 \sf \longrightarrow \: 0

LHS = RHS

Hence Proved!!!

Answered by amitnrw
2

Given :   i¹⁰⁴ + i¹⁰⁹  + i¹¹⁴ + i¹¹⁹  = 0

To Find :  Show

Solution:

i² = - 1

i³ = - i

i⁴  =  1

xᵃ⁺ᵇ = xᵃxᵇ

i¹⁰⁴ + i¹⁰⁹  + i¹¹⁴ + i¹¹⁹  = 0

LHS =

i¹⁰⁴  (1  + i⁵ ) + i¹¹⁴(1  + i⁵)

i⁵ = i⁴.i = i

=  i¹⁰⁴  (1  + i ) + i¹¹⁴(1  + i)

= (1 + i) (  i¹⁰⁴ +  i¹¹⁴)

=  (1 + i) i¹⁰⁴ ( 1 + i¹⁰)

=   (1 + i) i¹⁰⁴ ( 1 + i⁸.i²)

i⁸ = (i⁴)² = 1

=   (1 + i) i¹⁰⁴ ( 1 + i²)

= (1 + i)i¹⁰⁴ ( 1 -1)

= (1 + i)i¹⁰⁴ (0)

= 0

= RHS

Hence LHS = RHS

i¹⁰⁴ + i¹⁰⁹  + i¹¹⁴ + i¹¹⁹  = 0

Shown

learn more:

iota into 2 iota into minus 1 by 8 iota whole cube - Brainly.in

brainly.in/question/2559880

1 + iota ki power 4 upon 1 minus iota cube whole power 4​ - Brainly.in

brainly.in/question/10010687

if X + i y whole cube equals to u + IV then show that you divided by X ...

brainly.in/question/13389619

Similar questions