Math, asked by jahidulislam66195, 10 months ago

ইউক্লিডৰ কলনবিধি ব্যৱহাৰ কৰি গ.সা.উ. উলিওৱা—
"(i) 135 আৰু 225 (ii)196 আৰু 38220
(iv) 272 আৰু 1032 (v) 405 আৰু 2520​

Answers

Answered by mohibulhoque813
4

Answer:

১২৩৪৫৬৭৮

Step-by-step explanation:

math

firstly I

Answered by knjroopa
1

Step-by-step explanation:

ইউক্লিডৰ কলনবিধি ব্যৱহাৰ কৰি গ.সা.উ. উলিওৱা—

"(i) 135 আৰু 225 (ii)196 আৰু 38220

(iv) 272 আৰু 1032 (v) 405 আৰু 2520

  • Now the h.c.f of the given numbers has to be found.
  • Euclid’s algorithm is a = bq + r
  • Dividend = (divisor x quotient) + remainder
  • 135 and 225
  • So here 225 is greater than 135.
  • So by dividing 225 by 135 we get the quotient as 1 and the remainder is 90.
  • 225 = 135 x 1 + 90
  • 135 = 90 x 1 + 45
  •   now 90 = 45 x 2 + 0
  • The remainder is 0 so we get the divisor as 45. This number 45 will be the hcf.
  • Next will be
  • 196 and 38220
  • 38220 = 196 x 195 + 0
  • The remainder is 0 so we get the divisor as 196. This number 196 will be the hcf.
  • Next will be
  • 272 and 1032
  • So after dividing we get
  • 1032 = 272 x 3 + 216
  • 272 = 216 x 1 + 56
  • 216 = 56 x 3 + 48
  • 56 = 48 x 1 + 8
  • 48 = 8 x 6 + 0
  • So the hcf is 8
  • So next will be 405 and 2520
  • 2520 = 405 x 6 + 90
  • 405 = 90 x 4 + 45
  • 90 = 45 x 2 + 0
  • Therefore the hcf will be 45

Reference link will be

https://brainly.in/question/18397943

Similar questions