ইউক্লিডৰ কলনবিধি ব্যৱহাৰ কৰি গ.সা.উ. উলিওৱা—
"(i) 135 আৰু 225 (ii)196 আৰু 38220
(iv) 272 আৰু 1032 (v) 405 আৰু 2520
Answers
Answered by
4
Answer:
১২৩৪৫৬৭৮
Step-by-step explanation:
math
firstly I
Answered by
1
Step-by-step explanation:
ইউক্লিডৰ কলনবিধি ব্যৱহাৰ কৰি গ.সা.উ. উলিওৱা—
"(i) 135 আৰু 225 (ii)196 আৰু 38220
(iv) 272 আৰু 1032 (v) 405 আৰু 2520
- Now the h.c.f of the given numbers has to be found.
- Euclid’s algorithm is a = bq + r
- Dividend = (divisor x quotient) + remainder
- 135 and 225
- So here 225 is greater than 135.
- So by dividing 225 by 135 we get the quotient as 1 and the remainder is 90.
- 225 = 135 x 1 + 90
- 135 = 90 x 1 + 45
- now 90 = 45 x 2 + 0
- The remainder is 0 so we get the divisor as 45. This number 45 will be the hcf.
- Next will be
- 196 and 38220
- 38220 = 196 x 195 + 0
- The remainder is 0 so we get the divisor as 196. This number 196 will be the hcf.
- Next will be
- 272 and 1032
- So after dividing we get
- 1032 = 272 x 3 + 216
- 272 = 216 x 1 + 56
- 216 = 56 x 3 + 48
- 56 = 48 x 1 + 8
- 48 = 8 x 6 + 0
- So the hcf is 8
- So next will be 405 and 2520
- 2520 = 405 x 6 + 90
- 405 = 90 x 4 + 45
- 90 = 45 x 2 + 0
- Therefore the hcf will be 45
Reference link will be
https://brainly.in/question/18397943
Similar questions