Math, asked by sandyboss202, 1 year ago

(i^18+(1/i )^25)^3=2(1-i)

Answers

Answered by shaluverma3937
4
plz see attached image
it contains your answer
Hope it helps you
Attachments:

sandyboss202: no
shaluverma393778: right because in the end i^2=-1
Answered by Nereida
2

Answer:

\longrightarrow\tt{\bigg[{i}^{18}+\bigg(\dfrac{1}{i}\bigg)^{25}\bigg]^{3}}

\longrightarrow\tt\bigg[{i}^{4\times4+2}+\dfrac{1}{{i}^{4\times6+1}}\bigg]^{3}

\longrightarrow\tt{\bigg(-1+\dfrac{1}{i}\bigg)^{3}}

\longrightarrow\tt{(-1)^3+\bigg(\dfrac{1}{i}\bigg)^3+3(-1)\bigg(\dfrac{1}{i}\bigg)\bigg(-1+\dfrac{1}{i}\bigg)}

\longrightarrow\tt{-1+\dfrac{1}{-i}+\bigg(\dfrac{-3}{i}\bigg)\bigg(\dfrac{-1i+1}{i}\bigg)}

\longrightarrow\tt{-1-\dfrac{-1}{i}-\dfrac{3}{i}\bigg(\dfrac{-1i+1}{i}\bigg)}

\longrightarrow\tt{-1-\dfrac{1}{i}+\dfrac{3i-3}{i^{2}}}

\longrightarrow\tt{-1-\dfrac{1}{i}+\bigg(\dfrac{-3i+3}{1}\bigg)}

\longrightarrow\tt{-1-\dfrac{1}{i}-3i+3}

\longrightarrow\tt{\dfrac{-1-3i^{2}}{i}+2}

\longrightarrow\tt{\dfrac{-1+3}{i}+2}

\longrightarrow\tt{\dfrac{-1+3+2i}{i}}

\longrightarrow\tt{\dfrac{2+2i}{i}\times\dfrac{i}{i}}

\longrightarrow\tt{\dfrac{2i+2i^{2}}{-1}}

\longrightarrow\tt{\dfrac{2i+(-2)}{-1}}

\longrightarrow\tt{-(2i-2)}

\longrightarrow\bf\underline{2(1-i)}

Similar questions