Math, asked by jhakprince05, 8 months ago

(i) √?+ 2 (ii) t2 + 5t – 1 (iii) √3x2 – 2x (iv) 8 (v) 1 – √2x (vi) (vii) 0 (viii) y½ + 3y + 2​

Answers

Answered by hukam0685
2

Step-by-step explanation:

Given that:

(i) √x+ 2 (ii) t2 + 5t – 1 (iii) √3x2 – 2x (iv) 8 (v) 1 – √2x (vi) 0 (vii) y½ + 3y + 2

To prove:

Identify Polynomial

Explanation: The expression is said to be polynomial if degree /power of variable is +ve integer.

(i)  \sqrt{x}  + 2 \\  \\ Ans:No,\:it\:is \: not \: a \: polynomial \: because \\  \: power \: of \: x \: is \: rational \: ( \frac{1}{2} ) \\

(ii) {t}^{2}  + 5t  - 1 \\  \\ Ans:Yes, \: it \: is \: a \: polynomial \:  \\

 (iii)\sqrt{3}  {x}^{2}  - 3x \\ Ans: \: Yes ,\: it \: is \: a \: polynomial

(iv)8 \\ Ans: \: Yes, \: it \: is \: a \: polynomial \: of \: degree \: 0 \\

(v)1 -  \sqrt{2} x \\ Ans: \: Yes, \: it \: is \: a \: polynomial

(vi)0 \\ Ans: \: Yes, \: it \: is \: a \: polynomial \: of \: zero \: degree

(vii) {y}^{ \frac{1}{2} }  + 3y + 2 \\ Ans: \: No, \: it \: is \: not \: a \: polynomial \\ because \: y \: has \: rational \: power

Thus,(ii),(iii),(iv),(v) and (vi) are polynomial.

Hope it helps you.

Similar questions