Math, asked by jyothipappu1976, 1 year ago

I -2 is a zero of the polynomial 3x²+2x+k find the value of k​

Answers

Answered by renuagrawal393
6

Answer:

p(x)=3x²+2x+k

x= -2 (given)

p(2)=3(2)²+2(2)+k

=> 12+4+k=0

=> 16+k=0

=> k=-16

hope it helps you....

Answered by Anonymous
2

Solution :

\bf{\large{\underline{\bf{Given\::}}}}}

If -2 is a zero of the polynomial 3x² + 2x + k.

\bf{\large{\underline{\bf{To\:find\::}}}}}

The value of k.

\bf{\large{\underline{\bf{Explanation\::}}}}}

Let the other zero be β

We have one zero is -2

We have polynomial p(x) = 3x² + 2x + k = 0

∴As we know that the quadratic polynomial compared with ax² + bx + c

  • a = 3
  • b = 2
  • c = k

Now;

\red{\underline{\underline{\bf{Sum\:of\:the\:zeroes\::}}}}}

\mapsto\sf{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2} } }\\\\\\\mapsto\sf{-2+\beta =\dfrac{-2}{3} }\\\\\\\mapsto\sf{\beta =\dfrac{-2}{3} +2}\\\\\\\mapsto\sf{\beta =\dfrac{-2+6}{3} }\\\\\\\mapsto\sf{\pink{\beta =\dfrac{4}{3}...................(1) }}

\red{\underline{\underline{\bf{Product\:of\:the\:zeroes\::}}}}}

\mapsto\sf{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term}{Coefficient\:of\:x^{2} } }\\\\\\\mapsto\sf{-2\times \beta =\dfrac{k}{3} }\\\\\\\mapsto\sf{-2\beta =\dfrac{k}{3} }\\\\\\\mapsto\sf{k=-6\beta }\\\\\\\mapsto\sf{k=-\cancel{6}\times \dfrac{4}{\cancel{3}} \:\:\:\:\:[from(1)]}\\\\\\\mapsto\sf{k=-2\times 4}\\\\\\\mapsto\sf{\pink{k=-8}}

Thus;

The value of k is -8 .

Similar questions