Math, asked by prashant00choudhary, 9 months ago

(i) (3x - 1)^2 – (3x - 2) (3x + 1)​

Answers

Answered by gchan1069
2

Step-by-step explanation:

(3x-1)^2 - (3x-2)(3x+1)

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2= -3x + 3

or....

(3x-1)^2 - (3x-2)(3x+1)

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2= -3x + 3

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2= -3x + 3 

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2= -3x + 3 If this was an equation (3x-1)^2 - (3x-2)(3x+1) = 0,

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2= -3x + 3 If this was an equation (3x-1)^2 - (3x-2)(3x+1) = 0,in that case we can find the solution of this equation by

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2= -3x + 3 If this was an equation (3x-1)^2 - (3x-2)(3x+1) = 0,in that case we can find the solution of this equation by-3x + 3 = 0

(3x-1)^2 - (3x-2)(3x+1)= 9x^2 - 6x + 1 - (9x^2 + 3x - 6x -2)= 9x^2 - 6x + 1 - 9x^2 - 3x + 6x + 2= -3x + 3 If this was an equation (3x-1)^2 - (3x-2)(3x+1) = 0,in that case we can find the solution of this equation by-3x + 3 = 0x = 1

Similar questions