Math, asked by sankalppathak057, 4 months ago

(i) 3x2 - 4 V3 x+4 = 0​

Answers

Answered by prince5132
22

GIVEN :-

  • 3x² - 4√3x + 4 = 0.

TO FIND :-

  • The value of x.

SOLUTION :-

 \implies  \sf \: 3x ^{2}  - 4 \sqrt{3} x + 4 = 0

By splitting the middle term,

\implies  \sf \: 3x ^{2} - \bigg (2 \sqrt{3}  + 2 \sqrt{3} \bigg )x + 4 = 0 \\

\implies  \sf \: 3x ^{2} - 2 \sqrt{3}x  - 2 \sqrt{3}x + 4 = 0 \\

\implies  \sf \:  \sqrt{3} x \bigg( \sqrt{3} x - 2 \bigg) - 2 \bigg( \sqrt{3} x - 2 \bigg) = 0 \\

\implies  \sf \: \bigg( \sqrt{3} x - 2 \bigg) \bigg( \sqrt{3} x - 2 \bigg) = 0 \\

\implies  \sf \:   \bigg( \sqrt{3} x - 2 \bigg) ^{2}  = 0 \\

\implies  \sf \:  \sqrt{3}x  - 2 =  \sqrt{0}  \\

\implies  \sf \:  \sqrt{3} x - 2 = 0 \\

\implies  \sf \:  \sqrt{3} x = 2 \\

\implies  \underline{ \boxed{ \sf \: x =  \dfrac{2}{ \sqrt{3} } }}

The above quadratic equation has real and equal roots .

Answered by TheBrainlyStar00001
218

TO SOLVE.

  •   \\ \tt{3x {}^{2}  - 4 \sqrt{3} x + 4 = 0}

EXPLANATION.

 \tt3 { x  }^{ 2  }  -4 \sqrt{ 3  }  x+4 =  0

 \tt \: 3x^{2}+\left(-4\sqrt{3}\right)x+4=0

 \tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{\left(-4\sqrt{3}\right)^{2}-4\times 3\times 4}}{2\times 3}

 \tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{48-4\times 3\times 4}}{2\times 3}

 \tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{48-12\times 4}}{2\times 3}

 \tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{48-48}}{2\times 3}

 \tt \: x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{0}}{2\times 3}

 \tt \: x=-\frac{-4\sqrt{3}}{2\times 3}

 \tt\: x=\frac{4\sqrt{3}}{2\times 3}

 \tt \: x=\frac{4\sqrt{3}}{6}

 \tt \: x=\frac{2\sqrt{3}}{3}

The Quadric Equation has real and equal roots.

Hope it helps u

Similar questions