(i) 4 + (7/8) (ii) 3*^ 5 1 5
Answers
Step-by-step explanation:
Solution−
We have with us to find the value of
\red{\rm :\longmapsto\:\sf\dfrac{cos^3\beta}{cos\alpha}+\dfrac{sin^3\beta}{sin\alpha}}:⟼
cosα
cos
3
β
+
sinα
sin
3
β
can be rewritten as
\rm \: = \:\sf\dfrac{4cos^3\beta}{4cos\alpha}+\dfrac{4sin^3\beta}{4sin\alpha}=
4cosα
4cos
3
β
+
4sinα
4sin
3
β
We know,
\begin{gathered}\red{\rm :\longmapsto\:cos3x = {4cos}^{3}x - 3cosx} \\ \red{\rm :\longmapsto\:it \: means} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \red{\rm :\longmapsto\: {4cos}^{3}x = cos3x + 3cosx}\end{gathered}
:⟼cos3x=4cos
3
x−3cosx
:⟼itmeans
:⟼4cos
3
x=cos3x+3cosx
Also,
\red{\rm :\longmapsto\: {4sin}^{3}x = 3sinx - sin3x}:⟼4sin
3
x=3sinx−sin3x
So, using this, we get
\rm \: = \:\sf\dfrac{cos3 \beta + 3cos \beta }{4cos\alpha}+\dfrac{3sin \beta - sin3 \beta }{4sin\alpha}=
4cosα
cos3β+3cosβ
+
4sinα
3sinβ−sin3β
\rm \: = \:\dfrac{cos3 \beta sin \alpha + 3cos \beta sin \alpha + 3sin \beta cos \alpha - sin3 \beta cos \alpha }{4sin \alpha cos \alpha }=
4sinαcosα
cos3βsinα+3cosβsinα+3sinβcosα−sin3βcosα
\rm \: = \:\dfrac{cos3 \beta sin \alpha- sin3 \beta cos \alpha + 3(cos \beta sin \alpha + sin \beta cos \alpha)}{2(2sin \alpha cos \alpha) }
Given data: and
To find: Simplify the given numbers
Solution:
According to the arithmetic rule we can able to solve one by one.
(i)
=>
(ii)
=> 243 × 15 = 3645
Hence the simplification of given numbers are and 3645.