Math, asked by ampandey2016, 4 months ago

(i) 5 – 4 sin 3x find domain and range​

Answers

Answered by vivekkumarkvnoida
0

-1< sin 3 x<1

-4<4 sin 3x<4

4>-4 sin 3x>-4

5+4>5-4 sin 3x>5-4

9>5-4sin 3x>1

1,9

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = 5 - 4 \: sin3x

Domain :-

Domain of a function is defined as set of all those real numbers for which f(x) is defined.

So,

\rm :\longmapsto\:Domain \: of \: f(x) :  \: x \:  \in \: R

Range :-

The range of a real function is the set of all those real number values taken f(x) at points in its domain.

We know,

\rm :\longmapsto\: - 1 \leqslant sin3x \leqslant 1

On multiply by - 4, we get

\rm :\longmapsto\: 4 \geqslant  - 4sin3x \geqslant  - 4

\rm :\longmapsto\:  - 4 \leqslant  - 4sin3x \leqslant  4

On adding 5 in each term, we get

\rm :\longmapsto\:  5- 4 \leqslant 5 - 4sin3x \leqslant 5 +  4

\rm :\longmapsto\:  1 \leqslant 5 - 4sin3x \leqslant 9

\rm :\longmapsto\:  1 \leqslant f(x) \leqslant 9

\bf\implies \:f(x) \:  \in \: [1, \: 9 ]

Additional Information :-

Question :-

Find the range of the function

\rm :\longmapsto\:f(x) = \dfrac{1}{2 + 3sin2x}

Solution :-

We know that,

\rm :\longmapsto\: - 1 \leqslant sin2x \leqslant 1

On multiply by 2, on both sides, we get

\rm :\longmapsto\: - 2 \leqslant 2sin2x \leqslant 2

On Adding 3 in each term, we get

\rm :\longmapsto\: 3- 2 \leqslant 2sin2x  + 3\leqslant 2 + 3

\rm :\longmapsto\: 1 \leqslant 2sin2x  + 3\leqslant 5

\rm :\longmapsto\:\dfrac{1}{5}  \leqslant \dfrac{1}{3 + 2sin2x}  \leqslant 1

\rm :\longmapsto\:\dfrac{1}{5}  \leqslant f(x)  \leqslant 1

\bf\implies \:f(x) \:  \in \:  \bigg[\dfrac{1}{5} ,  \: 1]

Hence,

Range of

\bf\implies \:\dfrac{1}{3 + 2sin2x}  \:  \in \:  \bigg[\dfrac{1}{5} ,  \: 1]

Similar questions