I.சுருக்கெோன விலடயளி (6 ெட்டும்). (6 X 2 =12)
1 கோவல்கோரருக்குத் ஜேோட்டத்ேிலுள்ள பணி யோது ?
2. ரவி ெிேிவண்டி ஓட்டினோன், பூலன எைிலய பிடித்ேது. இவ்விரண்டு
சேோடர்களிலும் சபயர்ச் செோற்கள் ெற்றும் விலனச் செோற்கலள
கண்டறிந்து எழுதுக?
3. சகோடுக்கப்பட்டுள்ள செோற்சறோடருக்கு ேகுந்ே நிறுத்ேற்குறியீடுக
அ. புைி ெோன் ெிங்கம் ஆகியலவ கோட்டு விைங்குகள்
ஆ. உன் சபயர் என்ன
4. படகில் செல்லும் ஜபோது விைங்குகள் ஏன் ேிடீசரன அைறின?
5. செய்ப்சபோருள் கோண்பஜே அறிவு என வள்ளுவர் கூறக் கோரணம் என்ன?
6. ெனுநீேிச்ஜெோழன் ஆரோய்ச்ெி ெணிலய அலெத்ேேற்கோன கோரணம் என்ன?
7. அழகோபுரி ென்னர் ேம் குடிெக்கலள எவ்வோறு நடத்ேினோர்?
8. ஜேோட்டத்ேின் நடுஜவ ரோ ோ ஜபோல் நின்றவர் யோர்?
II. விளக்கமாக விடையளி ( 2 மட்டும்). ( 2 X4=8)
1. எல்ைோரும் இப்படியே இருந்துவிட்டால் என இளமாறன் ஏன் கூறினான் ?
2. நீங்கள் படித்ே ேிருக்குறள் கலேகளுள் உங்களுக்கு பிடித்ே கலே எது?
ஏன்?
3. விறகுசவட்டி ென்னரிடம் ேம் ெனக்குலறயோக என்ன கூறினோர் ?
4. உைகம் எப்ஜபோது ெகிழும்? - நன்சனறி போடல் மூைம் உணர்த்துக
III. அடி ெோறோெல் எழுதுக (2+2+4=8)
1. இன்செோைோல் எனத் சேோடங்கும் நன்சநறி போடலை எழுதுக
2. நிலறயுலடலெ எனத் சேோடங்கும் குறலள எழுதுக
3. ேன்லனத்ேோன் எனத் சேோடங்கும் குறலள எழுதுக
IV. நண்பனுக்கு அலழப்புக் கடிேம் எழுதுக. ( 6 )
V. கட்டுலர – உழவுத் சேோழில் . ( 6 )
Answers
Answer:
ax 2 + bx + c = 0
when a 0.
There are three basic methods for solving quadratic equations: factoring, using the quadratic formula, and completing the square.
Factoring
To solve a quadratic equation by factoring,
Put all terms on one side of the equal sign, leaving zero on the other side.
Factor.
Set each factor equal to zero.
Solve each of these equations.
Check by inserting your answer in the original equation.
Example 1
Solve x 2 – 6 x = 16.
Following the steps,
x 2 – 6 x = 16 becomes x 2 – 6 x – 16 = 0
Factor.
( x – 8)( x + 2) = 0
Setting each factor to zero, equation
Then to check, equation
Both values, 8 and –2, are solutions to the original equation.
Example 2
Solve y 2 = – 6 y – 5.
Setting all terms equal to zero,
y 2 + 6 y + 5 = 0
Factor.
( y + 5)( y + 1) = 0
Setting each factor to 0, equation
To check, y 2 = –6 y – 5
equation
A quadratic with a term missing is called an incomplete quadratic (as long as the ax 2 term isn't missing).
Example 3
Solve x 2 – 16 = 0.
Factor.
equation
To check, x 2 – 16 = 0
equation
Example 4
Solve x 2 + 6 x = 0.
Factor.
equation
To check, x 2 + 6 x = 0
equation
Example 5
Solve 2 x 2 + 2 x – 1 = x 2 + 6 x – 5.
First, simplify by putting all terms on one side and combining like terms.
equation
Now, factor.
equation
To check, 2 x 2 + 2 x – 1 = x 2 + 6 x – 5
equation
The quadratic formula
Many quadratic equations cannot be solved by factoring. This is generally true when the roots, or answers, are not rational numbers. A second method of solving quadratic equations involves the use of the following formula: equation
a, b, and c are taken from the quadratic equation written in its general form of
ax 2 + bx + c = 0
where a is the numeral that goes in front of x 2, b is the numeral that goes in front of x, and c is the numeral with no variable next to it (a.k.a., “the constant”).
When using the quadratic formula, you should be aware of three possibilities. These three possibilities are distinguished by a part of the formula called the discriminant. The discriminant is the value under the radical sign, b 2 – 4 ac. A quadratic equation with real numbers as coefficients can have the following:
Two different real roots if the discriminant b 2 – 4 ac is a positive number.
One real root if the discriminant b 2 – 4 ac is equal to 0.
No real root if the discriminant b 2 – 4 ac is a negative number.
Example 6
Solve for x: x 2 – 5 x = –6.
Setting all terms equal to 0,
x 2 – 5 x + 6 = 0
Then substitute 1 (which is understood to be in front of the x 2), –5, and 6 for a, b, and c, respectively, in the quadratic formula and simplify.
equation
Because the discriminant b 2 – 4 ac is positive, you get two different real roots.
Example produces rational roots. In Example , the quadratic formula is used to solve an equation whose roots are not rational.
Example 7
Solve for y: y 2 = –2y + 2.
Setting all terms equal to 0,
y 2 + 2 y – 2 = 0
Then substitute 1, 2, and –2 for a, b, and c, respectively, in the quadratic formula and simplify.
equation
Note that the two roots are irrational.
Example 8
Solve for x: x 2 + 2 x + 1 = 0.
Substituting in the quadratic formula,
equation
Since the discriminant b 2 – 4 ac is 0, the equation has one root.
The quadratic formula can also be used to solve quadratic equations whose roots are imaginary numbers, that is, they have no solution in the real number system.
Example 9
Solve for x: x( x + 2) + 2 = 0, or x 2 + 2 x + 2 = 0.
Substituting in the quadratic formula,
equation
Since the discriminant b 2 – 4 ac is negative, this equation has no solution in the real number system.
But if you were to express the solution using imaginary numbers, the solutions would be equation.
Completing the square
A third method of solving quadratic equations that works with both real and imaginary roots is called completing the square.
Put the equation into the form ax 2 + bx = – c.
Make sure that a = 1 (if a ≠ 1, multiply through the equation by equation before proceeding).
Using the value of b from this new equation, add equation to both sides of the equation to form a perfect square on the left side of the equation.
Find the square root of both sides of the equation.
Solve the resulting equation.
Example 10
Solve for x: x 2 – 6 x + 5 = 0.
Arrange in the form of
equation
Because a = 1, add equation, or 9, to both sides to complete the square.
equation
Take the square root of both sides.
x – 3 = ±2
Solve.
equation
Example 11
Solve for y: y 2+ 2 y – 4 = 0.
Arrange in the form of
equation
Because a = 1, add equation, or 1, to both sides to complete the square.
equation
Take the square root of both sides.
equation
Solve.
equation
Example 12
Solve for x: 2 x 2 + 3 x + 2 = 0.
Arrange in the form of
equation
Because a ≠ 1, multiply through the equation by equation.
equation
Add equation or equation to both sides.
equation
Take the square root of both sides.
equation
There is no solution in the real number system. It may interest you to know that the completing the square process for solving quadratic equations was used on the equation ax 2 + bx + c = 0 to derive the quadratic formula