Math, asked by aasifmustafakhan001, 8 months ago

(i) a 1 = a2 = 2, an = a-1, n > 2​

Answers

Answered by unicorn276
1

Answer:

Step-by-step explanation:

Since, a  

1

​  

,a  

2

​  

,a  

3

​  

,.....a  

2n

​  

 form an AP.

Therefore,

a  

2

​  

−a  

1

​  

=a  

4

​  

−a  

3

​  

=....a  

2n

​  

−a  

2n−1

​  

=d

Here, a  

1

2

​  

−a  

2

2

​  

+a  

3

2

​  

−a  

4

2

​  

+....+a  

2n−1

2

​  

−a  

2n

2

​  

 

=(a  

1

​  

−a  

2

​  

)(a  

1

​  

+a  

2

​  

)+(a  

3

​  

−a  

4

​  

)(a  

3

​  

+a  

4

​  

)+....+(a  

2n−1

​  

−a  

2n

​  

)⋅(a  

2n−1

​  

+a  

2n

​  

)

=−d(a  

1

​  

+a  

2

​  

+....+a  

2n

​  

)=−d(  

2

2n

​  

(a  

1

​  

+a  

2n

​  

)

Also, we know a  

2n

​  

=a  

1

​  

+(2n−1)d

⇒d=  

2n−1

a  

2n

​  

−a  

1

​  

 

​  

 

⇒−d=  

2n−1

a  

1

​  

−a  

2n

​  

 

​  

 

∴Therefore, the sum is

=  

2n−1

n(a  

1

​  

−a  

2n

​  

)⋅(a  

1

​  

+a  

2n

​  

)

​  

 

=  

2n−1

n

​  

⋅(a  

1

2

​  

−a  

2n

2

​  

).

Similar questions