Math, asked by rahiukey27, 6 months ago

i) A ABC and A DEF are equilateral triangles,
A( A ABC) : A(A DEF) - 1:2. IT AB=4 then what is length of DE?​

Answers

Answered by Anonymous
61

Corrrect Question:

\red\bigstar\triangle ABC and \triangle DEF are equilateral triangles. A( \triangle ABC) : A(\triangle DEF) = 1:2. If AB=4 then what is length of DE?

Given:

  • A ( \triangle ABC) : A ( \triangle DEF) = 1:2
  • AB = 4

Find:

  • Length of DE

Solution:

we, know that

All equilateral Triangles are similar to each other.

And, if two triangles are similar then the ratio of the area of Triangles is equal to square to the ratio of its corresponding sides.

So,

\green\star \sf \dfrac{ A( \triangle ABC) }{A( \triangle DE F)} =  {\bigg( \dfrac{ AB }{ DE }\bigg)}^{2}

where,

  • A ( \triangle ABC) : A ( \triangle DEF) = 1:2
  • AB = 4

SO,

\dashrightarrow \sf \dfrac{ A( \triangle ABC) }{A( \triangle DE F)} =  {\bigg( \dfrac{ AB }{ DE } \bigg) }^{2}

 \pink\dashrightarrow \sf  \dfrac{1}{2} =  {\bigg( \dfrac{4}{ DE } \bigg) }^{2}

 \pink\dashrightarrow \sf  \dfrac{1}{2} =   \dfrac{16}{ {DE}^{2} }

\qquad\quad Cross-multiplication

 \pink\dashrightarrow \sf  \dfrac{1}{2} =   \dfrac{16}{ {DE}^{2} }

 \pink\dashrightarrow \sf 16 \times 2 = {DE}^{2} \times 1

 \pink\dashrightarrow \sf 32= {DE}^{2}

 \pink\dashrightarrow \sf  \sqrt{32}= DE

 \pink\dashrightarrow \sf  DE =  \sqrt{32}

 \pink\dashrightarrow \sf  DE =  \sqrt{16 \times 2}

 \pink\dashrightarrow \sf  DE =  4\sqrt{2}

Hence, Length of DE = 4√2

Similar questions