Math, asked by siddiquiamaan, 1 year ago

I(a+b+c+d+e+f+g+i )^2 is expanded and simplified then the number of different terms in the final answer

Answers

Answered by rajeev378
30
\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Hey Mate!!!}}}
<b><i><font face=Copper black size=4 color=blue>
Here is your answer in the attachment

The Number of different terms are 36.

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!!}}}

<marquee>
\huge\bf{\red{\huge{\bf{@.....rajeev378}}}}
Attachments:
Answered by MonarkSingh
25
\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Hey Mate!!!}}}
<b><i><font face=Copper black size=4 color=red><marquee>
Here is your answer.

(a + b + c + d) {}^{2} + (e + f + g + i) {}^{2} + 2(a + b + c + d)(e + f + g + i) \\ \\ = (a + b) {}^{2} + (c + d) {}^{2} + 2(a + b)(c + d) + (e + f) {}^{2} + (g + i) {}^{2} + 2(e + f)(g + i) + 2(a + b + c + d)(e + f + g + i) \\ \\ = {a}^{2} + b {}^{2} + 2ab + {c}^{2} + {d}^{2} + 2cd + 2ac + 2ad + 2bc + 2bd + {e}^{2} + {f}^{2} + 2ef + {g}^{2} + {i}^{2} + 2gi + 2eg + 2ei + 2fg + 2fi + 2ae + 2af + 2ag + 2ai + 2be + 2bf + 2bg + 2bi + 2ce + 2cf + 2cg + 2ci + {2}^{} de + 2df + 2dg + 2di

Therefore, The number of different terms are 36.

\large{\blue{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!!}}}

<marquee>
\huge\bf{\red{\huge{\bf{@.. MonarkSingh}}}}
Similar questions