Math, asked by nnainatripti, 1 day ago

I a parallelogram shaped land , the cost of paving the land at the rate 50 paise per square metre is RS 150 and its base is 30m, find its height​

Answers

Answered by ImperialGladiator
65

Answer:

10m

Explanation:

Given,

The cost of paving a parallel shaped land at the rate of Rs.0.50/m² is RS.150

 \rm \therefore \: Area \: of \: the \: land =  \dfrac{Total \: cost}{Rate \: of \: paving}

 =  \dfrac{150}{0.50}

 \rm = 300 {m}^{2}

Therefore, area of the land is 300m²

Now,

Area of the parallel shaped land is given by,

=b \times h

Where,

  •  b(base) = 30m (given)
  • h denotes the height

Solving for \boldsymbol h

 \implies \: 300=bh

 \implies \: 300=30h

 \implies h =  \dfrac{300}{30}

 \implies h =   \rm 10m

Hence, height of the land is 10m

Answered by Anonymous
69

Given :

  • Base of the parallelogram = 30 m
  • Rate of paving = 50 paise
  • Total cost = Rs.150

 \\ \rule{200pt}{3pt}

To Find :

  • Height of the parallelogram = ?

 \\ \rule{200pt}{3pt}

Solution :

~ Formula Used :

 \large{\pink{\star}} \; {\underline{\overline{\boxed{\red{\sf{ Area{\small_{(Parallelogram)}} = Base \times Height }}}}}} \; {\pink{\star}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Area of land :

 \begin{gathered} \dashrightarrow {\qquad{\sf { Area{\small_{(Land)}} = \dfrac{Total \: Cost}{Rate} }}} \\ \end{gathered}

 \begin{gathered} \dashrightarrow {\qquad{\sf { Area{\small_{(Land)}} = \dfrac{150}{50} }}} \\ \end{gathered} \; \; \; \; \bigg\lgroup {\purple{\sf{ Rs. \; 1 \; = 100 \; paise }}} \bigg\rgroup

 \begin{gathered} \dashrightarrow {\qquad{\sf { Area{\small_{(Land)}} = \dfrac{150 \times 100}{50} }}} \\ \end{gathered}

 \begin{gathered} \dashrightarrow {\qquad{\sf { Area{\small_{(Land)}} = \dfrac{15000}{50} }}} \\ \end{gathered}

 \begin{gathered} \dashrightarrow {\qquad{\sf { Area{\small_{(Land)}} = \cancel\dfrac{15000}{50} }}} \\ \end{gathered}

 \begin{gathered} \dashrightarrow {\orange{\qquad{\sf{ Area \; of \; land = 300 \; m² }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Height of parallelogram :

 \begin{gathered} \implies {\qquad{\sf { Area{\small_{(parallelogram)}} = Base \times Height }}} \\ \end{gathered}

 \begin{gathered} \implies {\qquad{\sf { 300 = 30 \times Height }}} \\ \end{gathered}

 \begin{gathered} \implies {\qquad{\sf { 300 = 30 \times Height }}} \\ \end{gathered}

 \begin{gathered} \implies {\qquad{\sf { \dfrac{300}{30} =  Height }}} \\ \end{gathered}

 \begin{gathered} \implies {\qquad{\sf { \cancel\dfrac{300}{30} =  Height }}} \\ \end{gathered}

 \begin{gathered} \implies {\green{\qquad{\sf{ Height \; of \; parallelogram \; = 10 \; m }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❛❛ Height of the parallelogram shaped land is 10 m . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions