Math, asked by devib7247, 3 months ago

I am 8th class .this is maths A, polynomials chapter please tell​

Attachments:

Answers

Answered by Yuseong
4

Required Solution:

Find the remainder :-

  \sf{ \dfrac{ {x}^{4}  +   {4x}^{3}  -  {5x}^{2}   - 6x + 7 }{x - 3}  =  \pmb \sf \red{133_{(Remainder)}}}

  \sf{ \dfrac{ {x}^{4}  +   {4x}^{3}  -  {5x}^{2}   - 6x + 7 }{x+ 3}  =  \pmb \sf \red{-47_{(Remainder)}}}

  \sf{ \dfrac{ {x}^{4}  +   {4x}^{3}  -  {5x}^{2}   - 6x + 7 }{x - 2}  =  \pmb \sf \red{23_{(Remainder)}}}

  \sf{ \dfrac{ {x}^{4}  +   {4x}^{3}  -  {5x}^{2}   - 6x + 7 }{x + 2}  =  \pmb \sf \red{-17_{(Remainder)}}}

  \sf{ \dfrac{ {x}^{4}  +   {4x}^{3}  -  {5x}^{2}   - 6x + 7 }{x - 1}  =  \pmb \sf \red{1_{(Remainder)}}}

  \sf{ \dfrac{ {x}^{4}  +   {4x}^{3}  -  {5x}^{2}   - 6x + 7 }{x + 1}  =  \pmb \sf \red{5_{(Remainder)}}}

⠀⠀⠀⠀⠀_____________

A little further...!

  • A polynomial is an algebraic expression involving one or two or more variables.

  • A polynomial contains only non-negative integral exponents.

  • There are three types of polynomials on the basis of number of the terms:
  1. Monomial (contains 1 term)
  2. Binomial (contains 2 terms)
  3. Trinomial (contains 3 terms)
  4. Quadrinomial (contains 4 terms)

  • To verify the solutions of the division of a polynomial by a polynomial , we can use the division algorithm, i.e

Dividend = Divisor × Quotient + Remainder

Attachments:
Similar questions