Math, asked by Anonymous, 2 months ago

I am giving 50 points please give me proper explaination ​

Attachments:

Answers

Answered by Anonymous
44

{ \underline{ \large{ \pmb{ \sf{Solution:}}}}}

{ \sf{Let \:  the \:  initial  \: height  \: of  \: the  \: tree \:  be  \: AC}}

{ \sf{When \:  the  \: storm  \: come,  \: the  \: tree \:  broke  \: from  \: point  \: B}}

{ \sf{The  \: broken  \: part  \: of  \: the  \: tree \:  BC \:  touches \:  the  \: ground  \: at \:  D}}

{ \sf{it \:  makes \:  an  \: angle  \: 30°  \: on \:  the  \: ground}}

Also, AD = 6m

In, Right Angle triangle BAD

 : { \implies{ \sf{tan30 =  \frac{AB}{AD} }}} \\  \\  : { \implies{ \sf{ \frac{1}{ \sqrt{3}  } =  \frac{AB}{6}  }}} \\  \\  : { \implies{ \sf{AB =  \frac{6}{ \sqrt{3} } m}}}

In triangle, BAD,

 : { \implies{ \sf{cos30 =  \frac{AD}{BD} }}} \\  \\  : { \implies{ \sf{ \frac{ \sqrt{3} }{2} =  \frac{6}{BD}  }}} \\  \\  : { \implies{ \sf{BD =  \frac{12}{ \sqrt{3} }m }}}

But, BD = BC

  • AC = AB + BC

 : { \implies{ \sf{ \frac{6}{ \sqrt{3} } +  \frac{12}{ \sqrt{3} }  }}} \\  \\  : { \implies{ \sf{ \frac{18}{ \sqrt{3} } }}} \\  \\  : { \implies{ \sf{ \frac{18}{ \sqrt{3} } \times   \frac{ \sqrt{3} }{ \sqrt{3} }   }}} \\  \\  : { \implies{ \sf{ \frac{18 \sqrt{3} }{3} }}} \\  \\  : { \implies{ \sf{6 \sqrt{3} }}}

{ \therefore{ \large{ \pmb{ \sf{Height  \: of \:  tree  \: before \:  falling = 6 \sqrt{3}  m}}}}}

Attachments:
Similar questions