Math, asked by shivam7842, 5 months ago

I am giving more points because this is a big question ....!!!
Say the Area of the Rhombus, circle , parallelogram, quadrilateral, rectangle, ring, square , trapezium , triangle ,
and
perimeter of hexagon, octagon, Pentagon, rectangle, square
thank u​

Answers

Answered by MathWizzMan
39

Good Question Shivam !

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:Rhombus\: = \frac{1}{2}  d_{1} d_{2}}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:circle\: = π{r}^{2}}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:Parallelogram\:=\:Base\:×\:Heigh}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:Quadrilateral\:=\:\frac{1}{2}d \:  (h_{1}  h_{2})}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:Rectangle\:=\:Length\:×\:Breadth}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:Ring\:=\:π(R + r) (R - r}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:Square\:=\:Side\:×\:Side}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:Trapezium\:=\:\frac{1}{2}(Sum\:of\:the\:length\:of\:parallel\:sides)\:(Distance\:between\:them)}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Area\: of \:the\:Triangle\:=bh\frac{1}{2}}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Perimeter\:of\:the\:Hexagon\:=\:6×Length\:of\:any\:side}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Perimeter\:of\:the\:Octangon\:=\:8×Length\:of\:any\:side}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Perimeter\:of\:the\:Pentagon\:=\:5×Length\:of\:any\:side}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Perimeter\:of\:the\:Rectangle\:=\:2(l\:+\:b)}}}}

\: \: \:\:\: \: \circ \: \underline{\boxed{\red{\scriptsize{ \sf Perimeter\:of\:the\:Square\:=4×Length\:of\:any\:side}}}}

Answered by VelvetBlush
1

\tt\red{Area_{(Rhombus)}=\frac{1}{2}d_{1} d_{2}}

\tt\pink{Area_{(Circle)}=π{r}^{2}}

\tt\blue{Area_{(Parallelogram)}=Base × Height}

\tt\green{Area_{(Quadrilateral)}=\frac{1}{2}d(h_{1} h_{2})}

\tt{Area_{(Rectangle)}=Length×Breadth}

\tt\orange{Area_{(Ring)}=π(R+r)(R-r)}

\tt\gray{Area_{(Square)}=Side × side}

\tt\red{Area_{(Trapezium)}=\frac{1}{2}(Sum \: of \: the \: length \: of \: parallel \: sides)(Distance\: between\: them) }

\tt\pink{Area_{(Triangle)}=\frac{1}{2}×Base × Height}

\tt\blue{Perimeter_{(Hexagon)}=6×Length \: of \: any \: side}

\tt\green{Perimeter_{(Octagon)}=8×Length \: of \: any \: side}

\tt{Perimeter_{(Pentagon)}=5×Length \: of \: any \: side}

\tt\orange{Perimeter_{(Rectangle)}=2×(Length+Breadth)}

\tt\gray{Perimeter_{(Square)}=4×Length \: of \: any \: side}

Similar questions