Math, asked by Anonymous, 5 months ago

I am giving uhhh challenge.
 \rm \implies log_{4}(x)  +  log_{2}(x)  = 6
Solve for x. ​

Answers

Answered by tanmai587
2

Step-by-step explanation:

i sent it as2 pics .........

Attachments:
Answered by anindyaadhikari13
5

Required Answer:-

Given:

  •  \rm log_{4}(x) +  log_{2}(x)  = 6

To find:

  • The value of x.

Solution:

We have,

 \rm \implies log_{4}(x) +  log_{2}(x)  = 6

We know that,

 \rm  \leadsto log_{x}(y)  =  \dfrac{ log(y) }{ log(x) }

So,

 \rm \implies  \dfrac{ log(x) }{ log(4) } + \dfrac{ log(x) }{ log(2) }   = 6

 \rm \implies  \dfrac{ log(x) }{ log(2^{2})  } + \dfrac{ log(x) }{ log(2) }   = 6

We know that,

 \rm \leadsto log( {x}^{y} )  = y log(x)

So,

 \rm \implies  \dfrac{ log(x) }{2 log(2)  } + \dfrac{ log(x) }{ log(2) }   = 6

 \rm \implies  \dfrac{ log(x) + 2 log(x)  }{2 log(2)  }  = 6

 \rm \implies  \dfrac{3 \log(x)  }{2  \log(2)  }  = 6

 \rm \implies  \dfrac{ \log(x)  }{ \log(2)  }  = 6 \times  \dfrac{2}{3}

 \rm \implies  \dfrac{ \log(x)  }{ \log(2)  }  = 4

 \rm \implies  log_{2}(x)  = 4

 \rm \implies  x  =  {2}^{4}

 \rm \implies  x  = 16

Hence, the values of x is 16.

Answer:

  • The value of x is 16.
Similar questions