Math, asked by solankidevika935, 8 months ago

I am rectangle.my length is x unit and breadth is y unit . Sum of my length and breadth =36.My breadth is 5/7 times of the length. The difference between my length and breadth is 6 unit. If the breadth is subtracted twice the length, the answer is 27. ​

Answers

Answered by RvChaudharY50
28

Solution :-

given that,

→ x + y = 36 -------- Eqn.(1)

→ y = (5/7)x ------- Eqn.(2)

→ x - y = 6 -------- Eqn.(3)

Adding Eqn.(1) and Eqn.(3)

→ x + y + x - y = 36 + 6

→ 2x = 42

→ x = 21 .

putting value of x in Eqn.(1)

→ 21 + y = 36

→ y = 36 - 21

→ y = 15 .

checking now,

→ 2 * length - breadth = 27

→ 2 * 21 - 15 = 27

→ 42 - 15 = 27

27 = 27 .

Attachments:
Answered by Anonymous
22

Given: The length and breadth of a rectangle are x and y units respectively Sum of my length and breadth = 36 and My breadth is 5/7 times of the length.

⠀⠀⠀⠀•The difference between my length and breadth is 6

⠀⠀⠀⠀• If the breadth is subtracted twice the length is 27

To be Found : The length and breadth of the rectangle

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

❒ Let the length of the rectangle be x and the breadth be y respectively.

 \\

{ \underline{ \bf{ \bigstar \:According \: to \: the \: question : }}}

 \longrightarrow \tt \: x + y = 36 -   - -  - (1) \\  \\  \\  \longrightarrow \tt \: y =  \frac{5}{7} x -  -    -  - (2) \:  \:  \:  \:  \:   \: \\  \\  \\  \longrightarrow \tt \: x - y = 6 -  -  -  -  (3) \:

 \\

Now,

  • Let's add up equation 1 and equation 3 to find the value of x

 \longrightarrow \tt \: x  \:\cancel{   + y} + x  \:  \cancel{- y} = 36 + 6 \\  \\  \\  \longrightarrow \tt2x = 42 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \tt \: x =  \frac{42}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \tt \:  { \purple{ \underline{ \boxed{ \frak{x = 21}}} \star}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

  • Now, let's substitute the value of x in any of the equation to find the value of y

 \\

★ Putting it in equation 3 we get,

 \longrightarrow \tt \: x  - y = 6 \\  \\  \\ \longrightarrow \tt \: 21 - y = 6 \\  \\  \\ \longrightarrow \tt - y = 6 - 21 \\  \\  \\    \longrightarrow \tt - y =  - 15 \:  \:  \\  \\  \\ \longrightarrow \tt \:  { \purple{ \underline{ \boxed{ \frak{y = 15}}} \star}} \:  \:  \:  \:

 \\

{ \large{ \underline{ \pmb{ \rm{Verification... }}}}}

{ : \implies} \sf \:  y = ( \frac{5}{7} )x  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \sf \: 15 =  \frac{5}{7} \times 21 \\  \\  \\  { : \implies} \sf15 = 5 \times 3 \:  \:  \:  \\  \\  \\ { : \implies}{ \boxed{ \frak{15 = 15}} \star} \:  \:

  • L.H.S = R.H.S Hence Verified.!!

\\

Henceforth,

{ \underline{ \frak{The \: lenght \: and \: breadth \: are \: 21 \: and \: 15 \: respectivly}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

Similar questions