Math, asked by tarracharan, 9 months ago

I am testing...
who give correct answer will get Brainliest and 1 thanks.
I will post the answer if no one knows.

Attachments:

Answers

Answered by rajeevr06
5

Answer:

y =  \frac{1}{2}  ln( \frac{1 + sin \: x}{1 - sin \: x} )

2y =  ln(1 + sin \: x)  -  ln(1 - sin \: x)

Differentiating both sides w.r.t x..

2 \frac{dy}{dx}  =  \frac{cos \: x}{1 + sin \: x}  -  \frac{ - cos \: x}{1 - sin \: x}  =  \frac{cos \: x - sin \: x \: cosx + cosx + sinx \: cosx}{ 1 -  {sin}^{2}x }  = 2 \frac{cos \: x}{ {cos}^{2}x }  = 2 \: sec \: x

 \frac{dy}{dx}  = sec \: x

Ans.

Answered by Anonymous
5

Answer:

\large{\purple{\sf{2x²-5\sqrt{3}x+4}}}2x²−5

3

x+4

\large{\boxed{\red{\sf{x=\frac{-b±\sqrt{b²-4ac}}{2a}}}}}

x=

2a

−b±

b²−4ac

{\boxed{\sf{x=\frac{-(-5\sqrt{3})±\sqrt{(-5\sqrt{3})²-4(2)(4)}}{2(2)}}}}

x=

2(2)

−(−5

3

(−5

3

)²−4(2)(4)

{\boxed{\sf{x=\frac{5\sqrt{3}±\sqrt{75-32}}{4}}}}

x=

4

5

3

±

75−32

\green{\boxed{\sf{x_{1}=\frac{5\sqrt{3}+\sqrt{43}}{4}}}}

x

1

=

4

5

3

+

43

\green{\boxed{\sf{x_{2}=\frac{5\sqrt{3}-\sqrt{43}}{4}}}}

x

2

=

4

5

3

43

Similar questions