Physics, asked by pakritibvermas, 4 months ago

i and j are the unit vectors along x and y- axis respectively.what is the magnitude and direction of the vectors I+ j and i - j ? what are the components of Vector A vector= 2i + 3j along directions of I + j a d i- j ??​

Answers

Answered by Anonymous
133

Aηswer:

consider a vector \displaystyle\sf \vec{P} given as:

\displaystyle\sf \vec{P} = \hat{i} + \hat{j}

\displaystyle\sf P_x \hat{i} + P_y \hat{j} = \hat{i}+\hat{j}

on comparing the components on both sides, we get :

\displaystyle\sf P_x = P_y = 1

\displaystyle\sf |\vec{P}| = \sqrt{P^2_x + P^2_y} = \sqrt{1^2+1^2} = \sqrt{2}\:\;\;\dots(i)

Hence, the magnitude of vector \displaystyle\sf \hat{i}+\hat{j} is √2.

_______________________________________

Let θ be the angle made by the vector \displaystyle\sf \vec{P}, with the x axis (see attachment {i}).

\displaystyle\sf

\displaystyle\sf \therefore \tan\theta = \left(\dfrac{P_y}{P_x}\right)

\displaystyle\sf \theta = \tan^{-1}\left(\dfrac{1}{1}\right)

\displaystyle\sf = 45^{\circ}\;\;\;\dots(ii)

Hence, the vector \displaystyle\sf \hat{i}+\hat{j} makes an angle of 45° with the x-axis.

_______________________________________

Let \displaystyle\sf \vec{Q} = \hat{i} - \hat{j}

\displaystyle\sf Q_x \hat{i} - Q_y \hat{j} = \hat{i} - \hat{j}

\displaystyle\sf Q_x = Q_y = 1

\displaystyle\sf |\vec{Q}| = \sqrt{Q^2_x + Q^2_y} = \sqrt{2}\;\;\;\dots(iii)

Hence the magnitude of vector \displaystyle\sf \hat{i}+\hat{j} is √2.

_______________________________________

Let θ be the angle made by the vector \displaystyle\sf \vec{Q}, with the x-axis, (see attachment {ii}).

\displaystyle\sf

\displaystyle\sf \therefore \tan\theta = \left(\dfrac{Q_x}{Q_y}\right)

\displaystyle\sf \theta = -\tan^{-1}\left(-\dfrac{1}{1}\right)

\displaystyle\sf = 45^{\circ}\;\;\;\dots(iv)

Hence, the vector \displaystyle\sf \hat{i}+\hat{j} makes an angle of 45.

\displaystyle\sf

It is given that :

\displaystyle\sf \vec{A} = 2\hat{i} + 3\hat{j}

\displaystyle\sf A_x \hat{i} + A_y \hat{j} = 2\hat{i} + 3\hat{j}

On comparing the coefficients of \displaystyle\sf \hat{i}\:\text{and}\:\hat{j},

A_x = 2 and A_y = 2

\displaystyle\sf |\vec{A}| = \sqrt{2^2 + 3^2}

\displaystyle\sf = \sqrt{13}

\displaystyle\sf

Let \displaystyle\sf \vec{A}_x make an angle of θ with the x-axis. (see attachment {iii}).

\displaystyle\sf \therefore \tan\theta = \left(\dfrac{A_y}{A_x}\right)

\displaystyle\sf \theta = \tan^{-1}\left(\dfrac{3}{2}\right)

\displaystyle\sf = \tan^{-1}(1.5)

\displaystyle\sf = 56.31^{\circ}

\displaystyle\sf

Angle between the vectors \displaystyle\sf (2\hat{i} + 3\hat{j}) and \displaystyle\sf (\hat{i}+\hat{j}),

θ = 56.31 – 45

= 11.31°

\displaystyle\sf

Components of vector \displaystyle\sf \vec{A}, along the direction of \displaystyle\sf \vec{P}, making an angle θ:

\displaystyle\sf = (A\cos\theta)\vec{P}

\displaystyle\sf = (A\cos 11.31)\dfrac{(\hat{i}+\hat{j})}{\hat{2}}

\displaystyle\sf = \sqrt{13} \times \dfrac{0.9806}{\sqrt{2}}(\hat{i}+\hat{j})

\displaystyle\sf = 2.5(\hat{i}+\hat{j})

\displaystyle\sf = \dfrac{25}{12}\times\sqrt{2}

\displaystyle\sf = \dfrac{5}{\sqrt{2}}\:\;\;\dots(v)

_______________________________________

Let θ be the angle between the vectors \displaystyle\sf (2\hat{i}+3\hat{j}) and \displaystyle\sf (\hat{i}-\hat{j})

\displaystyle\sf \theta = 45 + 56.31

\displaystyle\sf = 101.31^{\circ}

component of vector \displaystyle\sf \hat{A}, along the direction of \displaystyle\sf \vec{Q}, making an angle θ,

\displaystyle\sf = (A\cos\theta) \vec{Q} = (A\cos\theta)\dfrac{\hat{i}-\hat{j})}{\sqrt{2}}

\displaystyle\sf = \sqrt{13}\cos(901.31^{\circ}) \dfrac{\hat{i}-\hat{j})}{\sqrt{2}}

\displaystyle\sf = - \sqrt{\dfrac{13}{2}} \sin 11.30^{\circ}(\hat{i}-\hat{j})

\displaystyle\sf = -2.550 \times 0.1961(\hat{i}-\hat{j})

\displaystyle\sf = -\dfrac{5}{10}\times\sqrt{2}

\displaystyle\sf = -\dfrac{1}{\sqrt{2}}\:\;\;\dots(iv)

_______________________________________

Attachments:
Similar questions