Physics, asked by soham1906, 7 months ago

i) Calculate the acceleration due to gravity on the surface of satellite having
mass 7.4 x 10^22 kg and radius 1.74 x 10^6 cm. (G = 6.7 x 10^-11 Nm/kg^2)
​​

Answers

Answered by Anonymous
98

 \bf \: hope \: above \: attachment \: help \: u \:   \smile \}

Attachments:
Answered by BrainlyConqueror0901
95

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration=16.3\times10^{2}\:m/s^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline{\bold{Given:}}} \\  \tt:   \implies Mass \: of \: satellite(M) = 7.4 \times  {10}^{22}  \: kg \\  \\ \tt:  \implies Radius(r) = 1.74 \times  {10}^{6}  \: cm \\  \\  \tt:  \implies G = 6.67 \times  {10}^{ - 11}  \: Nm/ {kg}^{2}  \\  \\ \red{\underline{\bold{To \: Find:}}}  \\  \tt:  \implies Acceleration \: due \: to \: gravity(g) =?

• According to given question :

  \tt \circ \: R=  \frac{1740000}{100}  =1.74 \times  {10}^{4}  \: m  \\  \\ \bold{As \: we \: know \: that} \\  \tt:  \implies g =  \frac{GM}{ {R}^{2} }  \\  \\ \tt:  \implies g =   \frac{6.67 \times  {10}^{ - 11}  \times 7.4 \times  {10}^{22}  }{ {(1.74 \times  {10}^{4} )}^{2} }  \times  \frac{N \times m \times kg}{ {kg}^{2} \times  {m}  }  \\  \\  \tt:  \implies g =   \frac{6.67 \times 7.4 \times  {10}^{ - 11 + 22} }{ {(1.74)}^{2} \times  {10}^{8}  }   \times  \frac{m}{ {s}^{2} }  \\  \\ \tt:  \implies g =   \frac{49.358 \times  {10}^{10} }{3.0276 \times  {10}^{8} }  \times m/{s}^{2}  \\  \\  \green{\tt:  \implies g = 16.3 \times  {10}^{2}  \: m/{s}^{2} }\\\\\green{\tt\therefore Acceleration\:due\:to\:gravity\:is\:16.3\times10^{2}\:m/s^{2}}

Similar questions