I Challange Brainlians .
Evaluate This Question
related to limits.
class 11th
Jee Mains
If
Then find out the value of a + b
Answers
Answer:
ANSWER :-) 7
Solution :-)
Given that
\displaystyle \lim_{x \to 1} \: \frac{ {x}^{2} - ax + b}{x - 1} = 5
x→1
lim
x−1
x
2
−ax+b
=5
As limit exists and is equal to 5 and also denominator is zero at x = 1
So numerator
{x}^{2} - ax + bx
2
−ax+b
Should be zero at x = 1
Hence
\begin{gathered}1 - a + b = 0 \\ \\ a = 1 + b\end{gathered}
1−a+b=0
a=1+b
Now putting the value of a from here to the given limit we get
\begin{gathered}\displaystyle \lim_{x \to 1} \: \frac{ {x}^{2} - ax + b}{x - 1} = 5 \\ \\ \implies \displaystyle \lim_{x \to 1} \: \frac{ {x}^{2} - (1 + b)x + b}{x - 1} = 5 \\ \\ \implies\displaystyle \lim_{x \to 1} \: \frac{ ({x}^{2} - x) - b(x - 1)}{x - 1} = 5 \\ \\ \implies\displaystyle \lim_{x \to 1} \: \frac{ (x - )(x - b)}{x - 1} = 5 \\ \\ \implies\displaystyle \lim_{x \to 1} \:(x - b) = 5 \\ \\ \implies1 - b = 5 \\ \\ \implies \pink{ \boxed{ \boxed{b = - 4}}}\end{gathered}
x→1
lim
x−1
x
2
−ax+b
=5
⟹
x→1
lim
x−1
x
2
−(1+b)x+b
=5
⟹
x→1
lim
x−1
(x
2
−x)−b(x−1)
=5
⟹
x→1
lim
x−1
(x−)(x−b)
=5
⟹
x→1
lim
(x−b)=5
⟹1−b=5
⟹
b=−4
So,
\blue{ \boxed{ \boxed{a = - 3}}}
a=−3
Now,
\red{ \boxed{ \boxed{a + b= - 7}}}
a+b=−7
Which is your required answer .