Math, asked by zabhat6007, 5 hours ago

İf 2 =p^3,then 8p must equal

Answers

Answered by avinashsingh3335
1

Answer:

10.08

ans 10.08

Answered by pulakmath007
1

SOLUTION

GIVEN

2 = p³ then 8p must equal

 \sf(A) \:  \:  {p}^{6}

 \sf(B) \:  \:  {p}^{8}

 \sf(C) \:  \:  {p}^{10}

 \sf(D) \:  \: 8 \sqrt{2}

FORMULA TO BE IMPLEMENTED

We are aware of the formula on indices that :

 \sf{1. \:  \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 \displaystyle \sf{2. \:  \:  \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

 \displaystyle \sf{3. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

 \displaystyle \sf{4. \:  \:  {a}^{0}  = 1}

EVALUATION

Here it is given that

\displaystyle \sf{ 2  =  {p}^{3} }

\displaystyle \sf{ \implies   {p}^{3} = 2 }

\displaystyle \sf{ \implies  {( {p}^{3}  )}^{3}  =  {2}^{3} }

\displaystyle \sf{ \implies  {p}^{3 \times 3}   =  {2}^{3} }

\displaystyle \sf{ \implies  {p}^{9}   =  8 }

Now 8p

\displaystyle \sf{  = 8 \times p}

\displaystyle \sf{  = {p}^{9}   \times p}

\displaystyle \sf{  = {p}^{9}   \times  {p}^{1} }

\displaystyle \sf{  = {p}^{9 + 1}    }

\displaystyle \sf{  = {p}^{10}    }

FINAL ANSWER

Hence the correct option is

 \sf(C) \:  \:  {p}^{10}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of x (2) 5) -³×(2/5) ^18=(2/5)^10x

https://brainly.in/question/47348923

2. If (-2)m+1 × (-2)4 = (-2)6 then value of m =

https://brainly.in/question/25449835

Attachments:
Similar questions