I f sin x: cos x: : √3 : 1, find sin x, cos x.
Answers
Answered by
26
sinx : cosx = √3 :1
sinx/cosx =√3/1
tanx=√3 [sin/cos=tan]
x=tan⁻¹(√3)
=60°= π/3
So substituting x as 60° we get,
⇒sinx=sin(60°)=√3/2
⇒cosx=cos(60°)=1/2
sinx/cosx =√3/1
tanx=√3 [sin/cos=tan]
x=tan⁻¹(√3)
=60°= π/3
So substituting x as 60° we get,
⇒sinx=sin(60°)=√3/2
⇒cosx=cos(60°)=1/2
tokaians:
can you answer my other q/s
Answered by
9
If a:b::c:d then ad=bc
Given
Sin x :cos x:: root3:1
sin x=root3 * cos x
sin x/cosx =root 3
tan x = root 3
tan x = tan 60
Therefore
x=60 degrees
Given
Sin x :cos x:: root3:1
sin x=root3 * cos x
sin x/cosx =root 3
tan x = root 3
tan x = tan 60
Therefore
x=60 degrees
Similar questions