(i) Find the domain and range of the function f(x) = x ÷ |x|
(ii) Find the range of the function f(x) = x - 1 ÷ |x + 2|
Answers
Answer:
Answers are given w. r.t the positions of the questions.
Step-by-step explanation:
For f(x) = x / l x l
For domain, f(x) must be a real number. This states x / l x l should be a real number.
= > l x l ≠ 0
Domain of f(x) is { R } - { 0 }
For range,
= > x / l x l
= > x / ( x ) or x / ( - x ) { x ≠ 0 }
= > 1 or - 1
Range of this function is { - 1 , 1 }.
For f(x) = ( x - 1 ) / l x + 2 l
For domain,
f(x) must be a real number. This states ( x - 1 ) / l x + 2 l must be a real number.
= > l x + 2 l ≠ 0
= > x + 2 ≠ 0 or - ( x + 2 ) ≠ 0
= > x ≠ - 2
Domain of the given function is { R } - { - 2 }.
For range,
Let y = ( x - 1 ) / l x + 2 l
= > yx + 2y = x - 1 or - yx - 2y = x - 1
= > 2y + 1 = x - yx or 1 - 2y = x + yx
= > 2y + 1 = x( 1 - y ) or 1 - 2y = x( 1 + y )
= > ( 2y + 1 ) / ( 1 - y ) = x or ( 1 - 2y ) / ( 1 + y ) = x
= > denominator must not 0 for a real number.
= > 1 - y = 0 or 1 + y = 0
= > y = ± 1
Range of this function is { R } - { 1 , - 1 }.