Math, asked by lamaranjima, 1 day ago

(i) Find the value of
( {x}^{3} -  \frac{1}{ {x}^{3} } )if \frac{x}{2}  =  \frac{1}{2x}  + 1

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

We have,

\tt{\dfrac{x}{2}=\dfrac{1}{2x}+1}

\tt{\implies\,x=\dfrac{2}{2x}+2}

\tt{\implies\,x=\dfrac{1}{x}+2}

\tt{\implies\,x-\dfrac{1}{x}=2}

\tt{\implies\,\left(x-\dfrac{1}{x}\right)^3=\left(2\right)^3}

\tt{\implies\,\left(x\right)^3-\left(\dfrac{1}{x}\right)^3-3\cdot\,x\cdot\dfrac{1}{x}\cdot\left(x-\dfrac{1}{x}\right)=\left(2\right)^3}

\tt{\implies\,{x}^{3}-\dfrac{1}{{x}^{3}}-3\cdot2=8}

\tt{\implies\,{x}^{3}-\dfrac{1}{{x}^{3}}-6=8}

\tt{\implies\,{x}^{3}-\dfrac{1}{{x}^{3}}=14}

Similar questions