Math, asked by Geetaror11, 20 days ago

i) Four numbers are in A.P. Their sum is 16 and the sum of their squares is 84. Find the
numbers.​

Answers

Answered by BrainlyRish
26

❍ Let's say that the four terms be a - 3d , a - d , a + d & a + 3d .

Given that ,

》 The sum of four terms of an A.P is 16 .

\qquad \therefore \sf \bigg( \:a - 3d \:\bigg) +  \bigg( \:a - d\:\bigg) +  \bigg( \:a + d  \:\bigg) + \bigg( \: a + 3d \:\bigg)\:\:=\:\:16\:\:\\\\\dashrightarrow \sf \bigg( \:a - 3d \:\bigg) +  \bigg( \:a - d\:\bigg) +  \bigg( \:a + d  \:\bigg) + \bigg( \: a + 3d \:\bigg)\:\:=\:\:16\:\:\\\\\dashrightarrow \sf  \:a - 3d \: +   \:a - d\: +   \:a + d  \: +  \: a + 3d \:\:\:=\:\:16\:\:\\\\\dashrightarrow \sf \:a + a + a + a - 3d  + 3d \: - d\: + d \:\:\:=\:\:16\:\:\\\\\dashrightarrow \sf \:4a - 3d  + 3d \: - d\: + d \:\:\:=\:\:16\:\:\\\\\dashrightarrow \sf \:4a \:\:\:=\:\:16\:\:\\\\\dashrightarrow \sf a \:=\:\dfrac{16}{4} \:\\\\ a \:=\: 4\:\:  \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:\:\:\:a\:=\:\:\:4\:\:}}}}}\\\\

AND ,

》The sum of the square of the four terms of an A.P is 84 .

\qquad \therefore \sf \bigg( \:a - 3d \:\bigg)^2 +  \bigg( \:a - d\:\bigg)^2 +  \bigg( \:a + d  \:\bigg)^2 + \bigg( \: a + 3d \:\bigg)^2\:\:=\:\:84\:\:\\\\ \dashrightarrow \sf \bigg( \:a - 3d \:\bigg)^2 +  \bigg( \:a - d\:\bigg)^2 +  \bigg( \:a + d  \:\bigg)^2 + \bigg( \: a + 3d \:\bigg)^2\:\:=\:\:84\:\:

As , we know that ,

  • Algebraic Indentity :

\qquad \dag\:\:\bigg\lgroup \sf{ ( a + b )^2 \:=\: a^2 + b^2 + 2ab }\bigg\rgroup \\\\\qquad \dag\:\:\bigg\lgroup \sf{ ( a - b )^2 \:=\: a^2 + b^2 - 2ab }\bigg\rgroup \\\\

\dashrightarrow \sf \bigg( \:a - 3d \:\bigg)^2 +  \bigg( \:a - d\:\bigg)^2 +  \bigg( \:a + d  \:\bigg)^2 + \bigg( \: a + 3d \:\bigg)^2\:\:=\:\:84\:\:\\\\ \: \dashrightarrow \sf \bigg(\:a^2 - 6ad \:+ 9d^2 \:\bigg) \: +  \bigg( \:a^2 -2 ad  +d^2\:\bigg)+  \bigg( \:a^2 + 2a d + d^2  \:\bigg) + \bigg( \: a^2 + 6ad  + 9d^2 \:\bigg)\:\:=\:\:84\:\:\\\\ \:  \dashrightarrow \sf \:a^2 - 6ad \:+ 9d^2 \: \: +   \:a^2 -2 ad  +d^2\:+  \:a^2 + 2a d + d^2  \: +  \: a^2 + 6ad  + 9d^2 \:\:\:=\:\:84\:\:\\\\ \: \dashrightarrow \sf \:4a^2 + 20 d  \:\:\:=\:\:84\:\:\\\\ \: \underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \:  \: Value\:of \: a  \::}}\\\\\dashrightarrow \sf \:4a^2 + 20 d ^2 \:\:\:=\:\:84\:\:\\\\ \:  \dashrightarrow \sf \:4(4)^2 + 20 d^2  \:\:\:=\:\:84\:\:\\\\ \:  \dashrightarrow \sf \:4(16) + 20 d^2  \:\:\:=\:\:84\:\:\\\\ \:  \dashrightarrow \sf \:64 + 20 d^2  \:\:\:=\:\:84\:\:\\\\ \: \dashrightarrow \sf \: 20 d^2  \:\:\:=\:\:84\:- 64\:\\\\ \: \dashrightarrow \sf \: 20 d^2  \:\:\:=\:\:20\:\:\\\\ \: \dashrightarrow \sf \:  d^2  \:\:\:=\:\:1\:\:\\\\ \: \dashrightarrow \sf \: d  \:\:\:=\:\:\pm \:1\:\:\\\\ \:  \dashrightarrow \sf \:  d \:\:\:=\:\:1 \:or \: -1\:\:\\\\ \: \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:\:\:\:a\:=\:\:\:1 \:\:or \:-1\:\:}}}}}\\\\

⠀⠀⠀⠀⠀¤ Finding four terms of an A.P ( Airthmetic Progression) :

As , We know that ,

  • Four Terms of an A.P are :

\qquad \dag\:\:\bigg\lgroup \sf{ \bigg( \:a - 3d \:\bigg) , \bigg( \:a - d\:\bigg) ,  \bigg( \:a + d  \:\bigg) , \bigg( \: a + 3d \:\bigg)\:\: }\bigg\rgroup \\\\\dashrightarrow \sf \bigg( \:a - 3d \:\bigg) , \bigg( \:a - d\:\bigg) ,  \bigg( \:a + d  \:\bigg) , \bigg( \: a + 3d \:\bigg)\:\: \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: \: Value  \:of \: a \: and \: d \: \::}}\\

  • When d is equal to 1 .

\dashrightarrow \sf \bigg( \:a - 3d \:\bigg) , \bigg( \:a - d\:\bigg) ,  \bigg( \:a + d  \:\bigg) , \bigg( \: a + 3d \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:4 - 3(1) \:\bigg) , \bigg( \:4 - 1\:\bigg) ,  \bigg( \:4 + 1  \:\bigg) , \bigg( \: 4 + 3(1) \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:4 - 3 \:\bigg) , \bigg( \:4 - 1\:\bigg) ,  \bigg( \:4 + 1  \:\bigg) , \bigg( \: 4 + 3 \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:1 \:\bigg) , \bigg( \:3\:\bigg) ,  \bigg( \:5  \:\bigg) , \bigg( \: 7 \:\bigg)\:\: \\\\

\dashrightarrow \sf  \:1 \:\ ,  \:3\: ,  \:5  \: ,  \: 7 \:\:\: \\\\\dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:Four \:Terms \: \:_{\:(\:d\:=\:1\:)}\:= \: 1, \:3\:,\:5\:,\:7\:\:}}}}}\\\\

⠀⠀⠀⠀⠀AND ,

  • When d is equal to -1 .

\dashrightarrow \sf \bigg( \:a - 3d \:\bigg) , \bigg( \:a - d\:\bigg) ,  \bigg( \:a + d  \:\bigg) , \bigg( \: a + 3d \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:4 - 3(-1) \:\bigg) , \bigg( \:4 - (-1)\:\bigg) ,  \bigg( \:4 + (-1)  \:\bigg) , \bigg( \: 4 + 3(-1) \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:4 + 3 \:\bigg) , \bigg( \:4 + 1\:\bigg) ,  \bigg( \:4 - 1 \:\bigg) , \bigg( \: 4 - 3  \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:7\:\bigg) , \bigg( \:5\:\bigg) ,  \bigg( \:4 \:\bigg) , \bigg( \: 1 \:\bigg)\:\: \\\\\dashrightarrow \sf  \:7 \:\ ,  \:5\: ,  \:3  \: ,  \: 1 \:\:\: \\\\ \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:Four \:Terms \: \:_{\:(\:d\:=\:-1\:)}\:= \: 7, \:5\:,\:3\:,\:1\:\:}}}}}\\\\\qquad \therefore \:\underline {\sf \:Hence \:The \:four \:terms \:can \; be \;\bf 1, 3 , 5 , 7 \:\:\sf or \:\bf 7, 5 ,3 , 1 \:}\\

Answered by Anonymous
2

❍ Let's say that the four terms be a - 3d , a - d , a + d & a + 3d .

 \sf \pmb{Answer :}

Given that ,

》 The sum of four terms of an A.P is 16 .

\qquad \therefore \sf \bigg( \:a - 3d \:\bigg) +  \bigg( \:a - d\:\bigg) +  \bigg( \:a + d  \:\bigg) + \bigg( \: a + 3d \:\bigg)\:\:=\:\:16\:\:\\\\\dashrightarrow \sf \bigg( \:a - 3d \:\bigg) +  \bigg( \:a - d\:\bigg) +  \bigg( \:a + d  \:\bigg) + \bigg( \: a + 3d \:\bigg)\:\:=\:\:16\:\:\\\\\dashrightarrow \sf  \:a - 3d \: +   \:a - d\: +   \:a + d  \: +  \: a + 3d \:\:\:=\:\:16\:\:\\\\\dashrightarrow \sf \:a + a + a + a - 3d  + 3d \: - d\: + d \:\:\:=\:\:16\:\:\\\\\dashrightarrow \sf \:4a - 3d  + 3d \: - d\: + d \:\:\:=\:\:16\:\:\\\\\dashrightarrow \sf \:4a \:\:\:=\:\:16\:\:\\\\\dashrightarrow \sf a \:=\:\dfrac{16}{4} \:\\\\ a \:=\: 4\:\:  \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:\:\:\:a\:=\:\:\:4\:\:}}}}}\\\\

AND ,

》The sum of the square of the four terms of an A.P is 84 .

\qquad \therefore \sf \bigg( \:a - 3d \:\bigg)^2 +  \bigg( \:a - d\:\bigg)^2 +  \bigg( \:a + d  \:\bigg)^2 + \bigg( \: a + 3d \:\bigg)^2\:\:=\:\:84\:\:\\\\ \dashrightarrow \sf \bigg( \:a - 3d \:\bigg)^2 +  \bigg( \:a - d\:\bigg)^2 +  \bigg( \:a + d  \:\bigg)^2 + \bigg( \: a + 3d \:\bigg)^2\:\:=\:\:84\:\:

As , we know that ,

Algebraic Indentity :

\qquad \dag\:\:\bigg\lgroup \sf{ ( a + b )^2 \:=\: a^2 + b^2 + 2ab }\bigg\rgroup \\\\\qquad \dag\:\:\bigg\lgroup \sf{ ( a - b )^2 \:=\: a^2 + b^2 - 2ab }\bigg\rgroup \\\\

\dashrightarrow \sf \bigg( \:a - 3d \:\bigg)^2 +  \bigg( \:a - d\:\bigg)^2 +  \bigg( \:a + d  \:\bigg)^2 + \bigg( \: a + 3d \:\bigg)^2\:\:=\:\:84\:\:\\\\ \: \dashrightarrow \sf \bigg(\:a^2 - 6ad \:+ 9d^2 \:\bigg) \: +  \bigg( \:a^2 -2 ad  +d^2\:\bigg)+  \bigg( \:a^2 + 2a d + d^2  \:\bigg) + \bigg( \: a^2 + 6ad  + 9d^2 \:\bigg)\:\:=\:\:84\:\:\\\\ \:  \dashrightarrow \sf \:a^2 - 6ad \:+ 9d^2 \: \: +   \:a^2 -2 ad  +d^2\:+  \:a^2 + 2a d + d^2  \: +  \: a^2 + 6ad  + 9d^2 \:\:\:=\:\:84\:\:\\\\ \: \dashrightarrow \sf \:4a^2 + 20 d  \:\:\:=\:\:84\:\:\\\\ \: \underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \:  \: Value\:of \: a  \::}}\\\\\dashrightarrow \sf \:4a^2 + 20 d ^2 \:\:\:=\:\:84\:\:\\\\ \:  \dashrightarrow \sf \:4(4)^2 + 20 d^2  \:\:\:=\:\:84\:\:\\\\ \:  \dashrightarrow \sf \:4(16) + 20 d^2  \:\:\:=\:\:84\:\:\\\\ \:  \dashrightarrow \sf \:64 + 20 d^2  \:\:\:=\:\:84\:\:\\\\ \: \dashrightarrow \sf \: 20 d^2  \:\:\:=\:\:84\:- 64\:\\\\ \: \dashrightarrow \sf \: 20 d^2  \:\:\:=\:\:20\:\:\\\\ \: \dashrightarrow \sf \:  d^2  \:\:\:=\:\:1\:\:\\\\ \: \dashrightarrow \sf \: d  \:\:\:=\:\:\pm \:1\:\:\\\\ \:  \dashrightarrow \sf \:  d \:\:\:=\:\:1 \:or \: -1\:\:\\\\ \: \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:\:\:\:a\:=\:\:\:1 \:\:or \:-1\:\:}}}}}\\\\

⠀⠀⠀⠀⠀¤ Finding four terms of an A.P ( Airthmetic Progression) :

As , We know that ,

Four Terms of an A.P are :

\qquad \dag\:\:\bigg\lgroup \sf{ \bigg( \:a - 3d \:\bigg) , \bigg( \:a - d\:\bigg) ,  \bigg( \:a + d  \:\bigg) , \bigg( \: a + 3d \:\bigg)\:\: }\bigg\rgroup \\\\\dashrightarrow \sf \bigg( \:a - 3d \:\bigg) , \bigg( \:a - d\:\bigg) ,  \bigg( \:a + d  \:\bigg) , \bigg( \: a + 3d \:\bigg)\:\: \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: \: Value  \:of \: a \: and \: d \: \::}}\\

When d is equal to 1 .

\dashrightarrow \sf \bigg( \:a - 3d \:\bigg) , \bigg( \:a - d\:\bigg) ,  \bigg( \:a + d  \:\bigg) , \bigg( \: a + 3d \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:4 - 3(1) \:\bigg) , \bigg( \:4 - 1\:\bigg) ,  \bigg( \:4 + 1  \:\bigg) , \bigg( \: 4 + 3(1) \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:4 - 3 \:\bigg) , \bigg( \:4 - 1\:\bigg) ,  \bigg( \:4 + 1  \:\bigg) , \bigg( \: 4 + 3 \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:1 \:\bigg) , \bigg( \:3\:\bigg) ,  \bigg( \:5  \:\bigg) , \bigg( \: 7 \:\bigg)\:\: \\\\

\dashrightarrow \sf  \:1 \:\ ,  \:3\: ,  \:5  \: ,  \: 7 \:\:\: \\\\\dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:Four \:Terms \: \:_{\:(\:d\:=\:1\:)}\:= \: 1, \:3\:,\:5\:,\:7\:\:}}}}}\\\\

⠀⠀⠀⠀⠀AND ,

When d is equal to -1 .

\dashrightarrow \sf \bigg( \:a - 3d \:\bigg) , \bigg( \:a - d\:\bigg) ,  \bigg( \:a + d  \:\bigg) , \bigg( \: a + 3d \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:4 - 3(-1) \:\bigg) , \bigg( \:4 - (-1)\:\bigg) ,  \bigg( \:4 + (-1)  \:\bigg) , \bigg( \: 4 + 3(-1) \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:4 + 3 \:\bigg) , \bigg( \:4 + 1\:\bigg) ,  \bigg( \:4 - 1 \:\bigg) , \bigg( \: 4 - 3  \:\bigg)\:\: \\\\\dashrightarrow \sf \bigg( \:7\:\bigg) , \bigg( \:5\:\bigg) ,  \bigg( \:4 \:\bigg) , \bigg( \: 1 \:\bigg)\:\: \\\\\dashrightarrow \sf  \:7 \:\ ,  \:5\: ,  \:3  \: ,  \: 1 \:\:\: \\\\ \dashrightarrow \:\:\underline {\boxed{\purple {\pmb{\frak{\:Four \:Terms \: \:_{\:(\:d\:=\:-1\:)}\:= \: 7, \:5\:,\:3\:,\:1\:\:}}}}}\\\\\qquad \therefore \:\underline {\sf \:Hence \:The \:four \:terms \:can \; be \;\bf 1, 3 , 5 , 7 \:\:\sf or \:\bf 7, 5 ,3 , 1 \:}\\

Similar questions