Chemistry, asked by sturahul9340, 8 months ago

i gave u challenge prove that 1+2+3+4+5+6+.......(infinity) = -1/12​

Answers

Answered by AsthaMilindPatil
2

Answer:

S=1+2+…+(n−1)+n.

Write it backwards:

S=n+(n−1)+…+2+1.

Add the two equations, term by term; each term is n+1, so

2S=(n+1)+(n+1)+…+(n+1)=n(n+1).

Divide by 2:

S=

n(n+1)

2

challenge excepted

now mark me as brainlest and give thanks to all my answers plszzzz

Answered by anindyaadhikari13
4

\star\:\:\:\sf\large\underline\blue{Question:-}

  • Prove the Ramanujan's infinite series problem.

\star\:\:\:\sf\large\underline\blue{Answer:-}

We have to prove,

 \boxed{ \sf1 + 2 + 3 + ... =  \frac{ - 1}{12}  }

This is first proven by our Indian Mathematician, Srinivasa Ramanujan.

So, here the proof comes.

Consider these given series,

 \sf S_{1} = 1 - 1 + 1 - 1 + 1 - 1...

 \sf S_{2}  = 1 - 2 + 3 - 4 + 5 - 6...

 \sf S_{3} = 1 + 2 + 3 + 4...

Using these series, we will prove this infinite series problem.

Consider the first Series, \sf S_{1}, given that,

 \sf S_{1} = 1 - 1 + 1 - 1 + 1 - 1...

We will find the sum of the given series.

Since this is an infinite series, we may imagine that total number of terms is odd, so,

 \sf S_{1} =  1 \cancel{ - 1  + 1} +  \cancel{ - 1 + 1} +....

So,

 \sf S_{1} =  1 ....(i)

Also, if we consider the total number of terms is even, then,

 \sf S_{1} =  \cancel{1 - 1} +  \cancel{1 - 1} + ...

So,

 \sf S_{1} =  0 ....(ii)

As there are two solutions, we will take the average of them,

 \boxed{ \sf S_{1} =   \frac{1}{2} }

So, the value of Series is 1/2.

Now, we will find the value of the second series.

 \sf S_{2}  = 1 - 2 + 3 - 4 + 5 - 6...

 \sf S_{2}  = \:  \:  \:  \:  \:  \:  \:  \:  1 - 2 + 3 - 4 + 5 - 6...

Adding both the series, we get,

 \sf 2S_{2} = 1 - 1 + 1 - 1 + ..

If we take a closer look at the right hand side, we get

 \sf 2S_{2} = S _{1}

 \sf \implies2S_{2} =  \frac{1}{2}

 \sf \implies S_{2} =  \frac{1}{4}

So,

 \boxed{ \sf S_{2} =  \frac{1}{4} }

Now,

 \sf S_{3} = 1 + 2 + 3 + 4  + 5 + ....

 \sf S_{2}  = 1 - 2 + 3 - 4 + 5 - 6...

Subtracting both the series, we get,

 \sf S_{3} - S_{2} = 4 + 8 + 12 + 16 + ...

 \sf \implies S_{3} - S_{2} = 4(1 + 2 + 3 + 4 + ...)

 \sf \implies S_{3} - S_{2} = 4S _{3}

 \sf \implies  - S_{2} = 3S _{3}

 \sf \implies   S_{3} =  \frac{ - 1}{4}  \times  \frac{1}{3}

 \sf \implies   S_{3} =  \frac{ - 1}{12}

So,

 \boxed{ \sf S_{3} =  \frac{ - 1}{12} }

So,

 \sf1 + 2 + 3 + 4 + 5 + ... =  \frac{ - 1}{12}

Hence Proved.

This was first proven by Ramanujan but this prove is somewhat crazy.

Similar questions