Math, asked by YoIMop, 2 months ago

I have 2 questions 1 in image and 1 is : A rational number which has non-terminating decimal representation is :- 91/32 , 101/625 , 49/105​

Attachments:

Answers

Answered by ragveersinghmand
0

Answer:

ans -11/10 is correct answer

Answered by Sweetoldsoul
9

Answer:

1) -11/ 10

2) 49/ 105

Step-by-step explanation:

We'll have to solve for  \alpha and  \beta to find out the value of the required expression.

It says  \alpha and  \beta are the roots of the expression x² - 3x + 10, i.e., the values of x for which the value of the expression is 0.

==> x² - 3x + 10 = 0 . . . . . eqn. (¡)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Nature of roots:

Let's first check the nature of roots, by using the discriminant properties of quadratic equations:

 \boxed{ \mathfrak{D(discrminant) =  {b}^{2}   - 4ac}}

Where a, and b are the coefficients of x²and x respectively and c is the constant term in a quadratic equation.

for eqn. (¡):

  • a = 1
  • b = -3
  • c = 10

D = b² - 4ac

= (-3)² - 4(1)(10)

= 9 - 40

= -31

D = -31

==> D < 0

If D < 0, the roots are imaginary numbers! number that can't be obtained on the Cartesian plane.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Roots of the equation:

The roots of a quadratic equation are given by:

 \boxed{ \mathsf{x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }}

 \implies \mathsf{ x =  \frac{ - ( - 3) \pm  \sqrt{ {( - 3)}^{2} - 40 }  }{2 \times 1} }

 \implies \mathsf{ x =  \frac{  3 \pm  \sqrt {9 - 40 }}{2} }

√(-31) can be written as √(31) × √(-1)

and √(-1) = i

==> √(-31) = √(31) i

\implies \mathsf{ x =  \frac{  3 \pm  \sqrt { - 31}}{2} }

\implies \mathsf{ x =  \frac{  3 \pm  \sqrt { 31} \: i}{2} }

Therefore, the values of  \alpha and  \beta (roots of the equation) are:

 \: \mathsf{  \alpha  =  \frac{  3 +  \sqrt { 31} \: i}{2} }

 \: \mathsf{   \beta   =  \frac{  3  -   \sqrt { 31} \: i}{2} }

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Final step to the answer:

We, now, have to find out the value of

 \boxed{( \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }  )}

Substituting the values of  \alpha and  \beta :

 \implies \mathsf{ (\frac{ \frac{3 +  \sqrt{31 \: i} }{2} }{ \frac{3 -  \sqrt{31} \: i }{2} }  \:  + \:  \frac{ \frac{3  -   \sqrt{31 \: i} }{2} }{ \frac{3  +   \sqrt{31} \: i }{2} }  )}

2 gets canceled out:

\implies \mathsf{ (\frac{ 3 +  \sqrt{31 \: i}  }{ {3 -  \sqrt{31} \: i } }  \:  + \:  \frac{ 3  -   \sqrt{31 \: i } }{3  +   \sqrt{31} \: i  }  )}

taking LCM, and getting a common denominator:

\implies \mathsf{ (\frac{3 +  \sqrt{31}\: i)^{2}   +( 3  -   \sqrt{31} \: i ) ^{2}  }{(3 -  \sqrt{31} \: i)(3  +   \sqrt{31} \: i) }}

  • (3 + 31 i)² + (3 - 31 i)² = 9 - 31 + 631 i+ 9 - 31 - 631 i

= 18 - 62

= - 44

[i² = -1]

[(a + b)² = a² + b² + 2ab]

  • (3 + √31 i) (3 - √31 i) = 3² - 31 i²

(3 + √31 i) (3 - √31 i) = 3² - 31 i²= 9 + 31

(3 + √31 i) (3 - √31 i) = 3² - 31 i²= 9 + 31 = 40

[(a + b)(a - b) = a² - b²]

\implies \mathsf{  \frac{ - 44 }{40 }}

4 being common in both Numerator and denominator gets canceled out

= -11/ 10

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Answer:

 = \mathsf {\frac{ - 11}{10} }

That is option 1!

_________________________________________

Second question, answer:

 \boxed{ \frac{49}{105} }

which yields a value of 0.466..

while,

101/ 625 = 0.1616

91/ 32 = 2.84375

 \mathfrak{ \overline{there \: you \: are!}}

Your questions are ingenious! Thank you! :)

Similar questions