I have a total of ₹300 in coins of denominator ₹1, ₹2 and₹5. the number of ₹2 coins in three times the number of ₹5 coins. the total number of coins is 160. how many coins of each denominator are with me?
*please tell me fast.
Answers
Step-by-step explanation:
number of 2 rupee coins = 3( number of 5 rupee coins)
let number of 5 rupee coins be x
therefore, number of 2 rupee coins = 3x
number of 1 rupee coins= total number of coins- number of 2 and 5 rupee coins
number of 1 rupee coins= 160-4x
value of 1 rupee coins= 1*(160-4x)= 160-4x rupees
value of 2 rupee coins= 2*(3x)=6x
value of 5 rupee coins=5*x = 5x
total value of all coins= 300 rupees
therefore, (160-4x)+6x+5x=300
160-4x+11x=300
11x-4x=300-160
7x=140
x= 140/7
x=20
number of 5 rupee coins= x= 20
number of 2 rupee coins= 3x = 3x20 = 60
number of 1 rupee coins= 160-4x=160 - 80 = 80
hope this helps
please mark brainliest <3
also, follow me
Answer:
Answer(s)
let the no. of rs 5 coins be x
& the no. of rs 1 coin be y
& no. of rs 2 coins be 3 x
a.q.t total no. of coins = 160
x + 3x+y = 160
4x + y = 160 eq. 1
again a.q.t total rs = 300
5x + 2(3x) + 1y = 300
11x + y = 300 eq. 2
by elimination method
on subtracting both the equations
4x + y = 160
-11x -y = -300
=-7x =-140
x =20
on putting the the value of x in eq 2
4(20) + y =160
80 + y = 160
y =80
now,
no of rs 2 coins = 3(20)
= 60
no. of rs 5 coins = 20
no. of rs 1 coins=80