Math, asked by Wondergurl, 6 months ago

I have a total of Rs 300 in coins of denomination Rs 1,Rs 2 and Rs 5.The number of Rs 2 coins is 3 times the number of Rs 5 coins. The total number of coins is 160. How many coins of each denomination are with me?​

Answers

Answered by Anonymous
184

\large{\underline{\sf{\red{Required\:Answer:}}}}

  • Number of Re 1 coins = \large\boxed{\underline{{\sf 80 }}}

  • Number of Rs 2 coins = \large\boxed{\underline{{\sf 60 }}}

  • Number of Rs 5 coins = \large\boxed{\underline{{\sf 20 }}}

Given:-

  • No. of Rs 5 coins + No. Rs of 2 coins + No. Rs of 1 coin = Rs 160.

  • Number of Rs 2 coins is 3 times the number of Rs 5 coins.

  • Total amount = Rs 300.

To Find:-

  • Number of coins in each domination.

Solution:-

Let the number of Rs 5 coins be x.

Then,

Number of Rs 2 coins = 3x

Number of coins of Re 1:-

\purple{\implies\:\:} \rm{160-(x+3x)}

\purple{\implies\:\:} \rm{160-4x}

According to the question :-

\green{\implies\:\:} \rm{5 \times x+2\times 3x+1 \times(160-4x)=300}

\green{\implies\:\:} \rm{5x+6x+160-4x=300}

\green{\implies\:\:} \rm{11x + 160 - 4x = 300}

\green{\implies\:\:} \rm{7x + 160 = 300}

\green{\implies\:\:} \rm{ 7x = 300 - 160}

\green{\implies\:\:} \rm{ 7x = 140}

\green{\implies\:\:} \rm{  x = \dfrac{140}{7}}

\green{\implies\:\:} \rm{  x = 20 }

Hence,

Number of coins of Rs 5 denomination

                         → 20

Number of coins of Rs 2 denomination

                  → 3 × 20 = 60

Number of coins of Rs 2 denomination

                → 160 - (4 × 20)

                → 160 - 80 = 80

____________________________


Cynefin: Awesome! :D
Answered by iTzShInNy
37

Answer:

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: given \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • Total amount = Rs 300

(Rs 1,Rs 2, Rs 5)

  • The number of Rs 2 coins is 3 times the number of Rs 5 coins.

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: To\: find \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • No. of coins in each denomination

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Let, \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • Number of Rs5 coins be x
  • Number of Rs 2 coins = 3× Number of 5 Rs coins =3x
  • Number of Rs 1 coins = 160−(x+3x)

=160−4x

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Now\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • Amount of Rs5 coins =5×x=5x
  • Amount of Rs2 coins =2×3x=Rs6x
  • Amount of Re1 coins =(160−4×x)

=160−4x

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Solution \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

Now, according to Question,

  • Total amount =Rs300

 \\   \\   \large \rm\bold{=  > 160 - 4x + 5x + 6x = 300} \\  \large \rm \bold{ =  > 7x = 300 - 160} \\  \large \rm \bold{ =  > x =   \cancel\frac{140}{7} } \\  \large \rm\bold{ =  > x = 20} \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Now \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • Number of Re 1 coins =160−4x

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ=160−4×20

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ=80

  • Number of Rs2 coins =3x=3×20=60
  • Number of Rs5 coins =x=20

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • The number of 1 Rs coin = 80
  • The number of 2 Rs coins = 60
  • The number of 5 Rs coins = 20
Similar questions