Math, asked by shreya264, 1 year ago

i have doubt in this question please solve this question

Attachments:

Answers

Answered by Anonymous
1
please mark me as brain list now
it's right
Attachments:

shreya264: wait
Answered by anonymous64
0
Given ---
x = 3 + 2√2

To find ---
√x - 1/√x

Finding ---

x = 3 + 2 \sqrt{2}
 =  >  \sqrt{x}  =  \sqrt{3 + 2 \sqrt{2} }
 =  >  \sqrt{x}  =    \sqrt{( { \sqrt{2}) }^{2}  + ( {1})^{2} + (2  \times 1  \times  \sqrt{2} ) }
 =  >  \sqrt{x }  =  \sqrt{ ({ \sqrt{2}   + 1})^{2} }
 =  >  \sqrt{x}  =  \sqrt{2} + 1
Therefore, √x = √2 + 1

Now,
 \frac{1}{ \sqrt{x} }  =  \frac{1}{ \sqrt{2} + 1 }
 =  >  \frac{1}{ \sqrt{x} } =  \frac{1}{ \sqrt{2 }  + 1}   \times  \frac{ \sqrt{2} - 1 }{ \sqrt{2} - 1 }
 =  >  \frac{1}{ \sqrt{x} }  =  \frac{1(2 -  \sqrt{1}) }{ ({ \sqrt{2}) }^{2}  - ( {1})^{2} }
 =  >  \frac{1}{ \sqrt{x} }  =  \frac{2 -  \sqrt{1} }{2 - 1}
 =  >  \frac{1}{ \sqrt{x} }  =  \frac{2 -  \sqrt{1} }{1}
 \frac{1}{ \sqrt{x} }  = 2 -  \sqrt{1}
Therefore, 1/√x = 2 - √1

Now,

 \sqrt{x}  -  \frac{1}{ \sqrt{x} }  = (2 +  \sqrt{1} ) - (2 -  \sqrt{1} )
 =  >  \sqrt{x}  -  \frac{1}{ \sqrt{x} }  = 2 +  \sqrt{1}  - 2 +  \sqrt{1}
 \sqrt{x}  -  \frac{1}{ \sqrt{x} }  = 2 \sqrt{2}
That's your answer.

Hope it'll help.. :-D


Similar questions