I have drawn a right angled triangle ABC whose ∠A is right angle. I took two points P and Q on the sides AB and AC respectively. By joining P,Q; B,Q and C,P let us Prove that,BQ2 + PC2 = BC2 + PQ2.
Answers
Answer:
Proof : In the figure ∆ABC,
∆ABQ, ∆APC, ∆ABC, are right angled triangle whose ∠A = 90°
∴ BC² = AB² + AC² ;
BQ² = AQ² + AB² ;
PC² = AP² + AC² ;
PQ² = AP² + AQ²
Now, BQ² + PC² = AQ²+ AB² +AP²+ AC²
and BC²+ PQ²
=> AB²+ AC²+ AP²+ AQ² = AQ² + AB²+ AP² + AC²
∴BQ² + PC² = BC² + PQ² (PROVED)
EXPLANATION.
In right angle triangle ΔABC.
∠A is right angled triangle.
points P and Q on the sides AB and AC.
By joining P,Q and B,Q and C,Q.
As we know that,
in right angled triangle,
⇒ H² = P² + B².
In right angled triangle ΔBQA.
⇒ (BQ)² = (AB)² + (AQ)². ⇒(1).
In right angled triangle ΔPAC.
⇒ (CP)² = (PA)² + (AC)². ⇒ (2).
Adding equation (1) & (2), we get.
⇒ BP² + CP² = AB² + AQ² + PA² + AC². ⇒(3).
In right angled triangle ΔBAC.
⇒ (BC)² = (BA)² + (AC)². ⇒(4).
In right angled triangle ΔPAQ.
⇒ (PQ)² = (PA)² + (AQ)². ⇒(5).
Solving equation (3),(4) and (5), we get.
From equation (4), we get.
⇒ BC² - BA² = AC². ⇒ (6).
From equation (5), we get.
⇒ PQ² - PA² = AQ². (7).
Put the value of equation (6) & (7) in equation (3), we get.
⇒ BQ² + CP² = AB² + (PQ² - PA²) + PA² + (BC² - BA²).
⇒ BQ² + CP² = AB² + PQ² - PA² + PA² + BC² - BA².
⇒ BQ² + CP² = BC² + PQ².