Physics, asked by vibhanshusingh70, 3 days ago

i have some problem in this question​

Attachments:

Answers

Answered by varadad25
5

Question:

If

\displaystyle{\sf\:\int\limits_a^b\:x^3\:dx\:=\:0} and

\displaystyle{\sf\:\int\limits_a^b\:x^2\:dx\:=\:\dfrac{2}{3}} then find the values of a and b.

Answer:

\displaystyle{\boxed{\red{\sf\:(\:a\:,\:b\:)\:=\:(\:-\:1\:,\:1\:)\:}}}

Step-by-step-explanation:

We have given two integrals.

We have to find the values of their lower limit, a and upper limit, b.

Now,

\displaystyle{\sf\:\int\limits_a^b\:x^3\:dx\:=\:0}

We know that,

\displaystyle{\boxed{\pink{\sf\:\int\:x^n\:dx\:=\:\dfrac{x^{n\:+\:1}}{n\:+\:1}}}}

\displaystyle{\implies\sf\:\dfrac{x^{3\:+\:1}}{3\:+\:1}\:\bigg|_a^b\:=\:0}

\displaystyle{\implies\sf\:\dfrac{x^4}{4}\:\bigg|_a^b\:=\:0}

Substituting upper and lower limits, we get,

\displaystyle{\implies\sf\:\dfrac{b^4}{4}\:-\:\dfrac{a^4}{4}\:=\:0}

\displaystyle{\implies\sf\:\dfrac{b^4\:-\:a^4}{4}\:=\:0}

\displaystyle{\implies\sf\:b^4\:-\:a^4\:=\:0}

\displaystyle{\implies\sf\:b^4\:=\:a^4}

\displaystyle{\implies\sf\:\sqrt[4]{\sf\:b^4}\:=\:\sqrt[4]{\sf\:a^4}}

\displaystyle{\implies\boxed{\purple{\sf\:b\:=\:\pm\:a}}}

Now,

\displaystyle{\sf\:\int\limits_a^b\:x^2\:dx\:=\:\dfrac{2}{3}}

We know that,

\displaystyle{\boxed{\pink{\sf\:\int\:x^n\:dx\:=\:\dfrac{x^{n\:+\:1}}{n\:+\:1}}}}

\displaystyle{\implies\sf\:\dfrac{x^{2\:+\:1}}{2\:+\:1}\:\bigg|_a^b\:=\:\dfrac{2}{3}}

\displaystyle{\implies\sf\:\dfrac{x^3}{3}\:\bigg|_a^b\:=\:\dfrac{2}{3}}

Substituting upper and lower limits, we get,

\displaystyle{\implies\sf\:\dfrac{b^3}{3}\:-\:\dfrac{a^3}{3}\:=\:\dfrac{2}{3}}

\displaystyle{\implies\sf\:\dfrac{b^3\:-\:a^3}{\cancel{3}}\:=\:\dfrac{2}{\cancel{3}}}

\displaystyle{\implies\sf\:b^3\:-\:a^3\:=\:2}

By using b = a, we get,

\displaystyle{\implies\sf\:a^3\:-\:a^3\:=\:2}

\displaystyle{\implies\sf\:0\:\neq\:2}

b = a is not acceptable.

Now, using b = - a, we get,

\displaystyle{\implies\sf\:(\:-\:a\:)^3\:-\:a^3\:=\:2}

\displaystyle{\implies\sf\:-\:a^3\:-\:a^3\:=\:2}

\displaystyle{\implies\sf\:-\:2\:a^3\:=\:2}

\displaystyle{\implies\sf\:a^3\:=\:-\:\cancel{\dfrac{2}{2}}}

\displaystyle{\implies\sf\:a^3\:=\:-\:1}

\displaystyle{\implies\:\boxed{\blue{\sf\:a\:=\:-\:1}}}

Now,

\displaystyle{\sf\:b\:=\:-\:a}

\displaystyle{\implies\sf\:b\:=\:-\:(\:-\:1\:)}

\displaystyle{\implies\:\boxed{\green{\sf\:b\:=\:1}}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:(\:a\:,\:b\:)\:=\:(\:-\:1\:,\:1\:)\:}}}}

Similar questions