Math, asked by pankajsood, 10 months ago

I hope now it is clear now tell me question 25​

Attachments:

Answers

Answered by chaman5964
1

Answer:

6

Step-by-step explanation:

thank me if u get it

and wait

Attachments:
Answered by Abhishek474241
2

Taking a =x

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

\tt{X+\dfrac{1}{X}}=√8 + 3

{\sf{\green{\underline{\large{To\:find}}}}}

\tt{X^3+\dfrac{1}{X^3}}

\tt{X^2+\dfrac{1}{X^2}}

\tt{X^3+\dfrac{1}{X^3}}

\tt{X^4+\dfrac{1}{X^4}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

x= 3 +√8

Now 1/x =

\tt\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}

\rightarrow\tt\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}\times\dfrac{3-\sqrt{8}}{3-\sqrt{8}}

=> 1/x = 3-√8

Now

x + 1/x = 3+√8 + 3-√8

=>x + 1/x = 6

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

Therefore

\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

Solving

\tt{X+\dfrac{1}{X}}=6

Both side squaring

\tt{(X+\dfrac{1}{X})^2}=(6)²

\implies\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}=36

\implies\tt{36=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

\implies\tt{36=X^2+\dfrac{1}{X^2}+2}

\implies\tt{36-2=X^2+\dfrac{1}{X^2}}

\implies\tt{34=X^2+\dfrac{1}{X^2}}

Now

\tt{X^3+\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3+\dfrac{1}{X^3)}=(X+\dfrac{1}{x})(X^2+\dfrac{1}{X^2}-\frac{1}{X}\times{X)}}

utting value

\implies\tt{X^3+\dfrac{1}{X^3}={6}(34-1)}

\implies\tt{X^3+\dfrac{1}{X^3}=6\times{33}}

\implies\tt{X^3+\dfrac{1}{X^3}=198}

Again

\implies\tt{34=X^2+\dfrac{1}{X^2}}

Both side squaring

=>x⁴ + 1/ x⁴ = 1156 -2

=>x⁴ + 1/ x⁴ = 1154

Similar questions