Math, asked by bhanuprakashreddy696, 17 days ago

i hope you will give me a solution​

Attachments:

Answers

Answered by saichavan
56

Answer:

 \sf \large \:  \green{Option \: (c) \: e}

Step-by-step explanation:

 \displaystyle  \sf \: \lim_{n\to \:  \infty } \bigg( \bigg(1 +  \frac{1}{n}  \bigg)^{n}  \bigg)

Common limit.

 \sf \: e^{1}

 \green{ \boxed{  \green{\sf \implies \: e}}}

Additional information:

 \displaystyle  \sf\lim_{x \to \: a} \frac{ {x}^{n}  -  {a}^{n} }{x - a}  = na {}^{n - 1}

 \displaystyle \sf \lim_{x \to \: 0} \frac{ \tan(x) }{x}  = 1

 \displaystyle \sf \lim_{x \to \: 0} \frac{ \sin(x) }{x}  = 1

 \displaystyle \sf \lim_{x \to \: a} \frac{ \sin(x - a) }{x - a}  = 1

Similar questions