Math, asked by keshavyadav06042006, 5 months ago

I hope you ,you give me correct answer​

Attachments:

Answers

Answered by chakrabortyshivam44
0

Answer:

a

2

+

a

2

1

=7

Step-by-step explanation:

Given \: a + \frac{1}{a}=3Givena+

a

1

=3

On Squaring both sides of the equation, we get

\left(a+\frac{1}{a}\right)^{2}=3^{2}(a+

a

1

)

2

=3

2

/* By an algebraic identity:

(x+y)² = x²+y²+2xy */

\implies a^{2}+\frac{1}{a^{2}}+2\times a \times \frac{1}{a}= 9⟹a

2

+

a

2

1

+2×a×

a

1

=9

\implies a^{2}+\frac{1}{a^{2}}+2= 9⟹a

2

+

a

2

1

+2=9

\implies a^{2}+\frac{1}{a^{2}}= 9 -2⟹a

2

+

a

2

1

=9−2

\implies a^{2}+\frac{1}{a^{2}}= 7⟹a

2

+

a

2

1

=7

Therefore,

a^{2}+\frac{1}{a^{2}}= 7a

2

+

a

2

1

=7

Step-by-step explanation:

Hope it helps

Answered by yashika8832
0

Answer:

a +  \frac{1}{a}  = 11

 {(a + \frac{1}{a})  }^{2}  =  {a}^{2} +   \frac{1}{ {a}^{2} }  + 2a \frac{1}{a}

 {(a +  \frac{1}{a} )}^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  +2

11 {}^{2} - 2 =  {a}^{2}  +  \frac{1}{ {a}^{2} }

 {a}^{2}  +  \frac{1}{ {a}^{2} }  = 119

Similar questions