Math, asked by darpan356, 1 year ago

I hve tried many times bt answer is not coming plz whoever will tell the answer will be marked as BRAINLIEST
I am giving guarantee plz prove that q​

Attachments:

Answers

Answered by ihrishi
1

Step-by-step explanation:

 {sec}^{4}  \theta(1 - {sin}^{4}  \theta) - 1 =  \frac{2}{{cot}^{2}  \theta}  \\ LHS =  {sec}^{4}  \theta(1 - {sin}^{4}  \theta) - 1 \\   = {sec}^{4}  \theta(1 - {sin}^{2}  \theta) (1  +  {sin}^{2}  \theta)- 1 \\ =  {sec}^{4}  \theta \: {cos}^{2}  \theta (1  +  {sin}^{2}  \theta)- 1 \\   = {sec}^{2}  \theta \:  (1  +  {sin}^{2}  \theta)- 1 \\  = {sec}^{2}  \theta \:    + {sec}^{2}  \theta {sin}^{2}  \theta- 1 \\  = {sec}^{2}  \theta  - 1 +  \frac{1}{{cos}^{2}  \theta }  \times {sin}^{2}  \theta \\ =  {tan}^{2}  \theta  +  \frac{{sin}^{2}  \theta}{{cos}^{2}  \theta}  \\  =  {tan}^{2}  \theta +  {tan}^{2}  \theta \\  = 2 {tan}^{2}  \theta \\  = 2 \times  \frac{1}{ {cot}^{2}  \theta}  \\  = \frac{2}{ {cot}^{2}  \theta}  \\ =  RHS \\

Thus proved...

Similar questions