Math, asked by reyanshthigulla, 1 month ago

i^i=
i=√-1
i(iota)
give ans in euler's form

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {i}^{i}

Let first represent i in polar form

Let assume that,

\rm :\longmapsto\:i = r(cosx + isinx) -  -  -  - (1)

can be rewritten as

\rm :\longmapsto\:i = rcosx + i \: rsinx

On comparing Real and Imaginary parts, we get

\rm :\longmapsto\:r \: cosx = 0 -  -  - (2)

and

\rm :\longmapsto\:r \: sinx = 1 -  -  - (3)

On squaring equation (2) and (3), and adding, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}x +  {r}^{2} {sin}^{2}x = 0 + 1

\rm :\longmapsto\: {r}^{2} ({cos}^{2}x +  {sin}^{2}x) = 1

\rm :\longmapsto\: {r}^{2} = 1

\rm \implies\:\boxed{ \tt{ \: r \:  =  \: 1 \: }} -  -  - (4)

On substituting the value of r, in equation (2) and (3), we get

\rm :\longmapsto\:cosx = 0

and

\rm :\longmapsto\:sinx = 1

\rm \implies\:\boxed{ \tt{ \: x = \dfrac{\pi}{2} \:  \: }}

On substituting the values of r and x in equation (1), we get

\rm :\longmapsto\:i \:  =  \: 1\bigg[cos\dfrac{\pi}{2}  + i \: sin\dfrac{\pi}{2} \bigg]

\bf\implies \:i = cos\dfrac{\pi}{2} + i \: sin\dfrac{\pi}{2}

can be rewritten as

\bf\implies \:i \:  =  \: \bigg[e\bigg]^{i\dfrac{\pi}{2}}

Hence,

 \red{\rm :\longmapsto\:  \: {i}^{i} \:  \: }

On substituting the value evaluated above, we get

\bf\implies \: {i}^{i}  \:  =  \: \bigg[e\bigg]^{i\dfrac{\pi}{2} \times i}

\bf\implies \: {i}^{i}  \:  =  \: \bigg[e\bigg]^{ {i}^{2} \dfrac{\pi}{2}}

\bf\implies \: {i}^{i}  \:  =  \: \bigg[e\bigg]^{  \:  -   \: \dfrac{\pi}{2}}

Similar questions