(i) If 0 is an acute angle and cosec 0 = √5, find the value of cot 0 – cos 0.
(ii) If 0 is an acute angle and tan 0 = 8/15. find the value of sec 0 + cosec 0.
Answers
Answered by
1
Answer:
cos∅=2/√5,cot∅=2
cot∅-cos∅=2-2/√5
Step-by-step explanation:
sec∅=√289/15,cosec∅=√289/8
sec∅+cosec∅=23√289/120
Answered by
2
Answer:
i) 1.11
ii) 3.26
Step-by-step explanation:
i) If 0 is an acute angle cosec 0 = Hypotenuse/Perpendicular = √5/1
cot0 = base/perpendicular
cos0 = base/hypotenuse
Using pythagoras theorem,
Hyp²= Perp² + base²
⇒ Base²= Hyp² - Perp²
⇒Base²= (√5)² - 1²
⇒Base²= 5 - 1
⇒Base²= 4
⇒Base = √4 = 2
cot0= 2/1 = 2
cos0= 2/√5
therefore,
cot0 - cos0 = 2- (2/√5) = [(2√5)-2]/√5 ≈ 1.11
ii) tan0= perp/base = 8/15
Using Pythagoras Theorem,
Hyp² = Perp² + Base²
= 8² + 15²
= 64 + 225
= 289
∴ Hyp = √289
= 17
sec0= hyp/base
= 17/15
cosec0= hyp/perp
= 17/8
sec0+ cosec0= (17/15) + (17/8)
= 391/120 ≈ 3.26
Similar questions