Math, asked by lakshmidevi19812020, 4 months ago

I
If a, ß are the roots of ax2+bx+C=0,then
 \alpha  \beta 2 +   \alpha 2 \beta  +  \alpha  \beta  \: is

Answers

Answered by BrainlyConqueror0901
141

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{{ \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  =  \frac{ {b}^{2} - ac }{ {a}^{2} }}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline{\bold{Given :}}} \\  \tt:  \implies  {ax}^{2}  + bx + c = 0 \\  \\ \tt:  \implies  \alpha  \: and \:  \beta  \: are \: roots \: of \: the \:eqn \\  \\ \red{\underline{\bold{To \: Find :}}} \\  \tt:  \implies  { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  = ?

• According to given question :

 \green {\star} \tt \: a = a \:  \:  \:  \: \:  \:  b = b \:  \:  \:  \:  \:  \: c = c \\  \\  \bold{As \:we \: know \: that} \\  \tt:  \implies Sum \: of \: roots =  - \frac{ b}{a}  \\  \\ \tt:  \implies  \alpha  +  \beta  =   - \frac{b}{a} -  -  -  -  - (1)  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Product \: of \: roots =  \frac{c}{a}  \\  \\ \tt:  \implies \alpha  \beta  =  \frac{c}{a}   -  -  -  -  - (2) \\  \\  \bold{For \: finding \: values }  \\  \tt:  \implies  { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  \\  \\ \tt:  \implies { (\alpha  +  \beta )}^{2}  - 2 \alpha  \beta  +  \alpha  \beta  \\  \\ \tt:  \implies  { (\alpha  +  \beta )}^{2}  -  \alpha  \beta  \\  \\ \tt:  \implies   \bigg(- \frac{b}{a}  \bigg)^{2}  -  \frac{c}{a}  \\  \\ \tt:  \implies  \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{c}{a}  \\  \\ \tt:  \implies  \frac{ {b}^{2}  - ac}{ {a}^{2} }  \\  \\   \green{\tt \therefore  { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  =  \frac{ {b}^{2} - ac }{ {a}^{2} } }


BrainlyIAS: Great :-) ❤
amansharma264: Good
Answered by Anonymous
66

\huge\sf\underline\red{Refer the attachment}

Attachments:
Similar questions