Math, asked by dhruv290522, 4 months ago


(i) If the polynomial f(x) = 3x4 + 3x3 - 11x2 - 5x + 10 is completely divisible by 3x2 – 5, find all its zeroes.​

Answers

Answered by ashokchauhan1969
1

\pink{3x {}^{4}  + 3  {x}^{3}  - 11x {}^{2}  - 5x + 10  }

 \frac{ \: \pink{3x {}^{4}  + 3  {x}^{3}  - 11x {}^{2}  - 5x + 10  } \:  \: }{3x {}^{2}  - 5}

(look in the attachment )

\blue{quotient \:  = x {}^{2} + x - 2 }

\blue{reminder = 0}

now splitting the term

x { }^{2}   + x - 2

There are two methods for finding zeros of a quadratic equation

1 {}^{st} case

x {}^{2}

is alone

let a and b the number the middle term is going to get into

x {}^{2}  + x - 2

a \times b =  - 2 \\ a + b = 1

2 \times  - 1 =  - 2 \\ 2 - 1 = 1

x {}^{2}  + 2x - 1x - 2 \\ x(x + 2) - 1(x + 2)

(x + 2) \: (x - 1)

x =  - 2 \: and \: 1

d =  \sqrt{b {}^{2}  - 4ac}

x =  \frac{ - b \frac{ + }{ - } d}{2a}

d =  \sqrt{1 {}^{2}  - 4 \times 1 \times  - 2}

d =  \sqrt{1  + 8}

d =  \sqrt{9}  \\ d = 3

x {}^{}  =   \frac{- 1 + 3}{1 \times 2}

x {}^{}  =  \frac{ 2}{2}

x {}^{}  =  1

x  =  \frac{ \:  - 1 - 3}{2 \times 1} \\ x =   \frac{ - 4}{2} \\ x =  - 2

3x {}^{2}  - 5

( \sqrt{3} x  ) {}^{2}   - ( \sqrt{5 }) {}^{2}

a { }^{2}  - b {}^{2}  = (a - b)(a + b)

( \sqrt{3} x+  \sqrt{5} )( \sqrt{3 } x -  \sqrt{5} )

x =  \frac{ \: -  \sqrt{5} }{ \sqrt{3} }  \: and \:  \frac{ \sqrt{5} }{ \sqrt{3} }

 \frac{ -  \sqrt{5} }{ \sqrt{3} }  \:  \:  \:  \:  \:  \frac{ \sqrt{5} }{ \sqrt{3} }  \:    \:  \:  - 2 \:  \:  \:  \ \: 1

Hope it helps

please mark me as brainliest

Attachments:
Similar questions