Math, asked by dipannita832, 1 month ago

(i) If x = 1 + 2. then show that : (x-1/x)^3 = 8
(ii) Simplify : 1/1+√2+1/√2+√3+1/√3√4​

Answers

Answered by akarbarabazar
0

Answer:

(i) x=1+2; so x=3,

(x-1/x)^3

=(3-1/3)^3

=8/3×3

=8

Answered by brainlysme15
1

(i)  Given,

x = 1 + √2

Now,

(x-\frac{1}{x})^3 = (1+\sqrt2-(\frac{1}{1+\sqrt2}))^3

             = [ 1+\sqrt2 - (\frac{1}{\sqrt2+1}) * (\frac{\sqrt2-1}{\sqrt2-1} ) ]^3

             = [1+\sqrt2-\frac{\sqrt2-1}{2-1}]^3

             = [1+\sqrt2-(\sqrt2-1)]^3

             = (1+\sqrt2-\sqrt2+1)^3

             = 2^3 = 8

Therefore,   (x-\frac{1}{x})^3 = 8

(ii)  we have,

\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\frac{1}{\sqrt3\sqrt4}

= \frac{1}{1+\sqrt2} * \frac{1-\sqrt2}{1-\sqrt2} + \frac{1}{\sqrt2+\sqrt3} * \frac{\sqrt2-\sqrt3}{\sqrt2-\sqrt3}+\frac{1}{\sqrt3\sqrt4}*\frac{\sqrt3\sqrt4}{\sqrt3\sqrt4}

= \frac{1-\sqrt2}{1-2}+\frac{\sqrt2-\sqrt3}{2-3}+\frac{\sqrt3\sqrt4}{3*4}

=\frac{1-\sqrt2}{-1}+\frac{\sqrt2-\sqrt3}{-1}+\frac{\sqrt3\sqrt4}{12}

= \frac{12-12\sqrt2+12\sqrt2-12\sqrt3-\sqrt3\sqrt4}{-12}

=\frac{-12+12\sqrt3+\sqrt3\sqrt4}{12}

=\frac{-2\sqrt3+12\sqrt3+\sqrt3\sqrt4}{12}

= \sqrt3(\frac{-2+12+2}{12})

= \sqrt3(\frac{12}{12})

=\sqrt3

https://brainly.in/question/17939115

https://brainly.in/question/15401270

#SPJ2

Similar questions