i.
In a trapezium ABCD,
seg AB || seg DC, seg BD I seg AD, seg AC I seg BC. If
AD=15, BC = 15, AB=25 and CD = 7, then find A (OABCD).
Answers
Answered by
9
Answer:
192 sq. units
Step-by-step explanation:
According to Pythagoras theorem,
In ∆ABD
AB²= AD²+DB²
(25)²=(15)²+DB²
625=225+BD²
BD²=625-225
BD²=400
BD=√400
BD=20
Now, Area of Triangle ABD=√s(s-a) (s-b) (s-c)
s= a+b+c/2
=20+25+15/2
=60/2
=30
Area of triangle=√30(30-20) (30-25) (30-15)
=√30×5×10×15
=150 sq. units
Also,
Area of triangle=½×base×height
150=½×25×DP
DP=300/25
DP=12
Therefore, area of trapezium=12
Now,
According to Pythagoras theorem
In ∆ADP
AD²=AP²+DP²
(15)²=AP²+(12)²
225=AP²+144
AP²=225-144
AP²=81
AP=√81
AP=9
AP=QB=9
CD=PQ=25-(9+9)=7
Area of trapezium=½ ×sum of parallel sides×height
=½×(25+7)×12
=½×32×12
=32×6
=192 sq. units
Hence A( trapezium ABCD) = 192sq.units
Similar questions