Math, asked by aseeskaur112, 5 hours ago

i) iota/1+iota
ii) 1-iota/1+iota​

Attachments:

Answers

Answered by varadad25
5

Question:

Express the following numbers in the form a + ib, a, b ∈ R:

i) \displaystyle{\sf\:\dfrac{i}{1\:+\:i}}

ii) \displaystyle{\sf\:\dfrac{1\:-\:i}{1\:+\:i}}

Answer:

i) \displaystyle{\boxed{\red{\sf\:\dfrac{i}{1\:+\:i}\:=\:\dfrac{1}{2}\:+\:\dfrac{1}{2}\:i}}}

ii) \displaystyle{\boxed{\pink{\sf\:\dfrac{1\:-\:i}{1\:+\:i}\:=\:0\:+\:(\:-\:1\:)\:i}}}

Step-by-step-explanation:

i)

\displaystyle{\sf\:\dfrac{i}{1\:+\:i}}

By multiplying and dividing by 1 - i, we get,

\displaystyle{\implies\sf\:\dfrac{i}{1\:+\:i}\:\times\:\dfrac{1\:-\:i}{1\:-\:i}}

\displaystyle{\implies\sf\:\dfrac{i\:(\:1\:-\:i\:)}{(\:1\:+\:i\:)\:(\:1\:-\:i\:)}}

\displaystyle{\implies\sf\:\dfrac{i\:-\:i^2}{1^2\:-\:i^2}}

\displaystyle{\implies\sf\:\dfrac{i\:-\:(\:-\:1\:)}{1\:-\:(\:-\:1\:)}}

\displaystyle{\implies\sf\:\dfrac{i\:+\:1}{1\:+\:1}}

\displaystyle{\implies\sf\:\dfrac{i\:+\:1}{2}}

\displaystyle{\implies\sf\:\dfrac{i}{2}\:+\:\dfrac{1}{2}}

\displaystyle{\implies\sf\:\dfrac{1}{2}\:+\:\dfrac{1}{2}\:i}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\dfrac{i}{1\:+\:i}\:=\:\dfrac{1}{2}\:+\:\dfrac{1}{2}\:i}}}}

─────────────────────

ii)

Now,

\displaystyle{\sf\:\dfrac{1\:-\:i}{1\:+\:i}}

By multiplying and dividing by 1 - i, we get,

\displaystyle{\implies\sf\:\dfrac{1\:-\:i}{1\:+\:i}\:\times\:\dfrac{1\:-\:i}{1\:-\:i}}

\displaystyle{\implies\sf\:\dfrac{(\:1\:-\:i\:)\:(\:1\:-\:i\:)}{(\:1\:+\:i\:)\:(\:1\:-\:i\:)}}

\displaystyle{\implies\sf\:\dfrac{(\:1\:-\:i\:)^2}{1^2\:-\:i^2}}

\displaystyle{\implies\sf\:\dfrac{1^2\:-\:2\:\times\:1\:\times\:i\:+\:i^2}{1\:-\:(\:-\:1\:)}}

\displaystyle{\implies\sf\:\dfrac{1\:-\:2i\:+\:(\:-\:1\:)}{1\:+\:1}}

\displaystyle{\implies\sf\:\dfrac{1\:-\:2i\:-\:1}{2}}

\displaystyle{\implies\sf\:\dfrac{-\:\cancel{2}\:i}{\cancel{2}}}

\displaystyle{\implies\sf\:-\:i}

\displaystyle{\implies\sf\:0\:+\:(\:-\:1\:)\:i}

\displaystyle{\therefore\:\underline{\boxed{\pink{\sf\:\dfrac{1\:-\:i}{1\:+\:i}\:=\:0\:+\:(\:-\:1\:)\:i}}}}

Answered by ItzShizuka50
11

Answer:

Required Answer:

 \sf{ i)\boxed{ \red{ \frac{i}{1 + i} }}}

 \sf{ i)\boxed{ \red{ \frac{1 - i}{1 + i} }}}

___________________________________

i.

First, multiplying and dividing by 1 - i , we get ,

 \tt{ \implies \:  \frac{i}{1 + i} \times  \frac{1 - 1}{1 - i}  }

 \tt{ \implies \:  \frac{i(1 - i)}{(1 + i)(1 - i)} }

 \tt{ \implies \: \frac{i -  {i}^{2} }{ {1}^{2}  -  {i}^{2} } }

 \tt{ \implies \:  \frac{i - ( - 1)}{1 - ( - 1)} }

 \tt{ \implies \:  \frac{i + 1}{1 + 1} }

 \tt{ \implies \:  \frac{i + 1}{2} }

 \tt{ \implies \:  \frac{i}{2}  +  \frac{1}{2}  }

 \tt{ \implies \:  \frac{1}{2} +  \frac{1}{2}  i}

Similar questions