Math, asked by saloni1409, 3 months ago

I know that, two matrices will equal if their order are same and their corresponding elements are identical..but how to prove it???​

Attachments:

Answers

Answered by PreetiGupta2006
16

 \boxed{ \sf \:  \purple{To  \: prove \:  : \:  AB  \not =   \: BA }}

 \sf \:   \mapsto \: Let's \:  multiply  \: A  \times  B  \: matrix  \: to \:  find \:  AB  \: matrix.

\begin{gathered} \\ \bf \:A = \left[\begin{array}{cc}5& - 1 \\ 6&7\end{array}\right] \\\end{gathered}  \:  \:  \:  \: \:  \:  \:  \begin{gathered} \\ \bf \:B = \left[\begin{array}{cc}2& 1 \\ 3&4\end{array}\right] \\\end{gathered}

\begin{gathered} \\ \bf \:AB = \left[\begin{array}{cc}(5 \times 2) + ( - 1 \times 3)& (5 \times 1) + ( - 1 \times 4) \\ (6 \times 2) + (7 \times 3) \:  \:  \: &(6 \times 1) + (7 \times 4) \:  \:  \: \end{array}\right] \\\end{gathered}  \:

\begin{gathered} \\ \bf \:AB = \left[\begin{array}{cc}10 + ( - 3)& 5 +  (- 4) \\ 12 + 21 \: &6 + 28 \: \end{array}\right] \\\end{gathered}

\begin{gathered} \\ \bf \:AB = \left[\begin{array}{cc}7& 1 \\ 33 \: &34 \: \end{array}\right] \\\end{gathered}     \sf \: \longrightarrow  \boxed { \red{1}}

_____________________________________

 \sf \:  \mapsto \: Let's \:  multiply  \:  B \times  A  \: matrix  \: to \:  find \:  BA \: matrix.

\begin{gathered} \\ \bf \:B = \left[\begin{array}{cc}2& 1 \\ 3&4\end{array}\right] \\\end{gathered}  \:  \:  \:  \:  \:  \:  \: \begin{gathered} \\ \bf \:A = \left[\begin{array}{cc}5& - 1 \\ 6&7\end{array}\right] \\\end{gathered}

\begin{gathered} \\ \bf \: BA = \left[\begin{array}{cc}(2\times 5) + ( 1 \times 6)& (2 \times  - 1) + ( 1 \times 7) \\  \:  \: (3 \times 5)  + (4 \times 6) \:  \:  \: & \:  \: (3 \times -  1) + (4\times 7) \:  \:  \: \end{array}\right] \\\end{gathered}  \:

\begin{gathered} \\ \bf \:BA = \left[\begin{array}{cc}10 + 6& ( - 2) +  7\\  \:  \: 15 + 24 \: & - 3 + 28 \: \end{array}\right] \\\end{gathered}

\begin{gathered} \\ \bf \:BA = \left[\begin{array}{cc}16& 5\\  \:  \: 39 \: & 25 \: \end{array}\right] \\\end{gathered}  \longrightarrow  \boxed { \red{2}}

 \sf \: From  \: equation \: \boxed{  \red{ 1}}  \: and \:   \boxed{\red{ 2 }} \: we  \: conclude \:  AB \:   \not = \:  BA.

 \sf  \green{\bigstar} \: \underline{  Conditions \: required  \:to \: multiply \: matrix. } \:  \green{\bigstar}

The number of columns in the first matrix must be equal to the number of rows in the second matrix

 \sf  \green{\bigstar} \: \underline{ More \:  to  \: know } \:  \green{\bigstar}

The result matrix will have the number of rows of the first and the number of columns of the second matrix.

Similar questions